基于土壤理化性质估计土壤水分特征曲线Van Genuchten模型参数
Parameter Estimation of SoilWater Retention Curve Based on Soil Physical and Chemical Properties of Van Genuchten Model
查看参考文献20篇
文摘
|
在东北黑土区采集了不同侵蚀强度黑土土样,测定其土壤水分、机械组成、有机质和容重等指标,利用Rosetta模型估计了Van Genuchten模型的参数,并将估算土壤水分与实测土壤水分对比,评价了选择不同土壤理化性质指标的模拟精度,及该方法对东北黑土的适宜性。结果表明:选择4个或6个土壤性质指标,尺度参数(α)和形状参数(n)的差异较大,采用6指标时,α增大,n减小。修正VG模型参数m与n的关系后,模型拟合精度明显提高,其中6指标的计算结果好于4指标,但拟合值偏大,需进一步较正。Rosetta模型适用于砂粒含量小于46%,粘粒含量大于28%的东北黑土。 |
其他语种文摘
|
The soil water retention curve (SWRC) is the basic parameter of soil hydraulics to study soil water movement and soil water balance, which is closely related to soil physical and chemical properties. But the parameters of model is difficult to estimate. In this study, black soil samples with different erosion intensity were collected in the black soil region of Northeast China, and soil moisture under 7 soil water suction, mechanical composition, organic matter and bulk density were measured. We used Rosetta model to estimate the parameters of Van Genuchten (VG) model and compared the estimated soil moisture with the measured soil moisture. And then the simulation accuracy of different soil physical and chemical indexes and the suitability of the method to the black soil in Northeast China were evaluated. The results showed that there had little effect for the residual water content (θr) and saturated water content (θ s) between 4 or 6 soil properties index, but had large difference for the scale parameter (α) and shape parameter (n). When the 6 indexes were used, shape parameter n decreased with the increased of scale parameter α. The relationship between the shape parameters m and n of the VG model was further modified, which improved the accuracy of model fitting obviously. The results of the 6 indexes were better than the 4 indexes. But the estimated values were different from the measured values and the estimated values were larger than the measured, which means soil moisture estimation need to be corrected according to the estimated value of relatively large degree. The fitting precision of Rosetta model for lightly and moderately erosion black soil was higher, and the precision of severely erosion black soil was lower. The model was suitable for sand content less than 46%, the clay content more than 28% of black soil in Northeast China. |
来源
|
地理科学
,2018,38(7):1189-1197 【核心库】
|
DOI
|
10.13249/j.cnki.sgs.2018.07.021
|
关键词
|
土壤水分特征曲线
;
土壤理化性质
;
黑土
;
Rosetta模型
;
Van Genuchten模型
|
地址
|
1.
北京师范大学地理科学学部, 北京, 100875
2.
水利部松辽水利委员会, 吉林, 长春, 130021
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0690 |
学科
|
农业基础科学 |
基金
|
国家自然科学基金
;
水利部公益性行业科研专项
|
文献收藏号
|
CSCD:6312247
|
参考文献 共
20
共1页
|
1.
雷志栋.
土壤水动力学,1988:18-24
|
CSCD被引
25
次
|
|
|
|
2.
Sillers W S. Mathematical attributes of some soil-water characteristic curve models.
Geotechnical and Geological Engineering,2001,19:243-283
|
CSCD被引
20
次
|
|
|
|
3.
翟俊瑞. 不同侵蚀强度黑土的土壤水分特征曲线模拟.
水土保持学报,2016,30(4):116-122
|
CSCD被引
10
次
|
|
|
|
4.
Schapp M G. Neural network analysis for hierarchical prediction of soil water retention and saturated hydraulic conductivity.
Soil Science Society of America Journal,1998,62:847-855
|
CSCD被引
1
次
|
|
|
|
5.
Schaap M G. Rosetta: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions.
Journal of Hydrology,2001,251(3/4):163-176
|
CSCD被引
69
次
|
|
|
|
6.
Leila Esmaeelnejad. Selection of a suitable model for the prediction of soil water content in north of Iran.
Spanish Journal of Agricultural Research,2015,13(1):2-11
|
CSCD被引
1
次
|
|
|
|
7.
王欢元. 两种土壤传递函数在预测砒砂岩与沙复配土的水力学参数中的应用.
土壤通报,2013(6):1351-1355
|
CSCD被引
3
次
|
|
|
|
8.
Rubio Carles M. Applicability of site-specific pedotransfer functions and Rosetta Model for the estimation of dynamic soil hydraulic properties under different vegetation covers.
Journal of Soils and Sediments,2008,8(2):137-145
|
CSCD被引
1
次
|
|
|
|
9.
Schaap Marcel G. Modeling water retention curves of sandy soils using neural networks.
Water Resources Research,1996,32(10):3033-3040
|
CSCD被引
15
次
|
|
|
|
10.
Pachepsky Y A. Artificial neural networks to estimate soil water retention from easily measurable data.
Soil Science Society of America Journal,1996,60(3):727-733
|
CSCD被引
20
次
|
|
|
|
11.
白建宏. 黑龙江省典型黑土区土壤侵蚀潜在危险度调查研究.
中国水土保持,2003(11):16-17
|
CSCD被引
5
次
|
|
|
|
12.
王志强. 东北黑土区土壤侵蚀对土地生产力影响试验研究.
中国科学,D辑:地球科学,2009,39(10):1397-1412
|
CSCD被引
33
次
|
|
|
|
13.
Wu Y Q. Development of gullies and sediment production in the black soil region of northeastern China.
Geomorphology,2008,101:683-691
|
CSCD被引
27
次
|
|
|
|
14.
郭鸿俊. 关于东北的地貌分区.
中国第四纪研究,1958,1:144-145
|
CSCD被引
1
次
|
|
|
|
15.
彭建平. 用MatLab确定土壤水分特征曲线参数.
土壤,2007,39(3):433-438
|
CSCD被引
19
次
|
|
|
|
16.
郑荣伟. 北京通州区典型农田土壤水分特征曲线测定及影响因素分析.
灌溉排水学报,2011,30(3):77-81
|
CSCD被引
14
次
|
|
|
|
17.
何修道. 北方地区植物篱系统土壤水分特征曲线模拟与分析.
草业学报,2016,25(7):42-51
|
CSCD被引
6
次
|
|
|
|
18.
姚姣转. 科尔沁沙地土壤水分特征曲线传递函数的构建与评估.
农业工程学报,2014,20(30):98-108
|
CSCD被引
2
次
|
|
|
|
19.
来剑斌. 土壤水分特征曲线模型比较分析.
水土保持学报,2003,17(1):137-140
|
CSCD被引
40
次
|
|
|
|
20.
刘洪波. 土壤水分特征曲线VG模型参数求解对比分析.
新疆农业大学学报,2011,34(5):437-441
|
CSCD被引
9
次
|
|
|
|
|