帮助 关于我们

返回检索结果

Landsat时序变化检测综述
Review on Landsat Time Series Change Detection Methods

查看参考文献82篇

汤冬梅   樊辉 *   张瑶  
文摘 时序变化检测已成为当前Landsat数据主流的变化检测方法。本文从检测算法对比、时序数据构建和精度评价等方面对Landsat时序变化检测进行回顾和评述,进而提出Landsat时序变化检测当前所存在的问题,及其所面临的挑战。Landsat时序变化检测算法可大致归纳为轨迹拟合法、光谱-时间轨迹法、基于模型的方法3大类,这些算法大多基于森林扰动提出;变化检测常用指标有波段型、植被指数型、线性变换型、组合型4大类,每类指标的优势不同,可综合多类指标以更全面地检测不同扰动类型。尽管Landsat时序变化检测已取得长足发展,但仍然面临诸多挑战,其中最大挑战是缺少一致性的参考数据集进行变化检测精度评价。
其他语种文摘 Change detection based on Landsat time series has become one of the most popular methods of remote sensing change detection. This paper reviews the status of Landsat time series change detection, including comparison of change detection algorithms, Landsat time series construction and accuracy assessment of change detection results. Major problems and challenges of performing Landsat time series change detection are presented. Landsat time series change detection algorithms can roughly be classified into three categories, i.e., trajectory fitting methods, spectral-temporal trajectory methods, and model-based methods. These algorithms are mostly developed based on forest disturbance. Only few of them were used to detect changes in other land use/land cover types (e.g. urban expansion). Their applications in other fields need further verification. In particular, the comparative study of those different algorithms should be strengthened, which would provide better guidance for users to select optimal detection methods in specific fields. These indices commonly used for Landsat time series change detection can be divided into four groups, including spectral band, vegetation index, linear transformation and their combinations. It is often suggested to combine the advantages of various indices to detect different disturbance types. Although change detection methods based on Landsat time series have developed rapidly, many challenges remain. Upon now, the lack of consistent reference data set for accuracy assessment of Landsat time series change detection is the most serious challenge. Confronted with new challenges, new approaches are needed to calibrate the time series change detection algorithms.
来源 地球信息科学学报 ,2017,19(8):1069-1079 【核心库】
DOI 10.3724/SP.J.1047.2017.01069
关键词 Landsat影像 ; 时序数据 ; 变化检测 ; 检测指标
地址

云南大学国际河流与生态安全研究院, 云南省国际河流与跨境生态安全重点实验室, 昆明, 650091

语种 中文
文献类型 综述型
ISSN 1560-8999
学科 测绘学
基金 国家自然科学基金项目 ;  国家重点研发计划课题 ;  云南省中青年学术技术带头人后备人才培育计划 ;  云南大学青年英才培育计划
文献收藏号 CSCD:6057257

参考文献 共 82 共5页

1.  Vitousek P M. Human domination of Earth's ecosystems. Science,1997,277(5325):494-499 CSCD被引 435    
2.  Mooney H. Confronting the human dilemma. Nature,2005,434(7033):561-562 CSCD被引 10    
3.  Turner B L. The emergence of land change science for global environmental change and sustainability. Proceedings of the National Academy of Sciences,2007,104(52):20666-20671 CSCD被引 193    
4.  Reid W V. Earth system science for global sustainability:grand challenges. Science,2010,330(6006):916-917 CSCD被引 44    
5.  傅伯杰. 我国生态系统研究的发展趋势与优先领域. 地理研究,2010,29(3):383-396 CSCD被引 71    
6.  徐冠华. 全球变化和人类可持续发展:挑战与对策. 科学通报,2013,58(21):2100-2106 CSCD被引 63    
7.  Singh A. Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing,1989,10(6):989-1003 CSCD被引 200    
8.  Coppin P. Digital change detection methods in natural ecosystem monitoring:A review. International Journal of Remote Sensing,2004,25(9):1565-1596 CSCD被引 67    
9.  Lu D. Change detection techniques. International Journal of Remote Sensing,2004,25(12):2365-2407 CSCD被引 129    
10.  Woodcock C E. Free access to Landsat imagery. Science,2008,320(5879):1011-1011 CSCD被引 32    
11.  Hilker T. A new data fusion model for high spatial-and temporal-resolution mapping of forest disturbance based on Landsat and MODIS. Remote Sensing of Environment,2009,113(8):1613-1627 CSCD被引 86    
12.  Vogelmann J E. Monitoring forest changes in the southwestern United States using multitemporal Landsat data. Remote Sensing of Environment,2009,113(8):1739-1748 CSCD被引 4    
13.  Huang C Q. An automated approach for reconstructing recent forest disturbance history using dense Landsat time series stacks. Remote Sensing of Environment,2010,114(1):183-198 CSCD被引 60    
14.  Vogelmann J E. Monitoring gradual ecosystem change using Landsat time series analyses:Case studies in selected forest and rangeland ecosystems. Remote Sensing of Environment,2012,122(SI):92-105 CSCD被引 13    
15.  Zhu Z. Continuous monitoring of forest disturbance using all available Landsat imagery. Remote Sensing of Environment,2012,122(SI):75-91 CSCD被引 23    
16.  Zhu Z. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sensing of Environment,2012,118:83-94 CSCD被引 106    
17.  Banskota A. Forest monitoring using Landsat time series data:A review. Canadian Journal of Remote Sensing,2014,40(5):362-384 CSCD被引 7    
18.  Zhu Z. Continuous change detection and classification of land cover using all available Landsat data. Remote Sensing of Environment,2014,144:152-171 CSCD被引 68    
19.  Vogelmann J E. Perspectives on monitoring gradual change across the continuity of Landsat sensors using time-series data. Remote Sensing of Environment,2016,185(SI):258-270 CSCD被引 7    
20.  Townshend J R. Global characterization and monitoring of forest cover using Landsat data:opportunities and challenges. International Journal of Digital Earth,2012,5(5):373-397 CSCD被引 18    
引证文献 13

1 黄萍 广西森林转型与森林扰动遥感监测研究 山地学报,2019,37(1):118-128
CSCD被引 2

2 张少宇 1988-2017年黄山自然与文化遗产地森林扰动数据集 中国科学数据,2019,4(3):1-11-11-11
CSCD被引 1

显示所有13篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号