帮助 关于我们

返回检索结果

基于大数据的城市服务业空间关联分析
Spatial Association Analysis for Urban Service Based on Big Data

查看参考文献18篇

廖伟华 1   聂鑫 2  
文摘 信息技术与电商平台的发展,产生了各种各样的大数据。在城市服务业中,商家在电商平台上注册自己带有坐标的信息,构成了空间服务业的空间大数据源。首先建立限定距离阈值的空间关联规则数据模型,介绍该模型产生频繁项集和关联规则的方法与步骤。最后利用Python爬取糯米网南宁站的商家信息,用Apriori算法做出了10~1 000 m 6种距离阈值的空间关联规则和服务业空间频繁项集。
其他语种文摘 With the development of information technology,big data has become a research focus of all sectors. There is an increasing demand for big data in the urban planning management process. Big data acquisition and calculation is a key technology in the process of the smart city construction. This article covers the following major aspects: 1) Distance table linking to urban service physical store table is used to establish spatial association frequent rules model based on the concept of spatial neighbouring point and the property of spatial point entity; the article also introduces the method and procedure of how spatial frequent items and spatial association rules appear in urban service spatial association model; 2) “For xml path”technology is used in SQL Server to build spatial transaction database because transaction database is needed in association rules computing; 3) Python+sqlite3+lxml+BeautifulSoup technology is used to crawl the online data of the companies in Nanning which have all of their public information registered on“Baidu Nuomi”(https://nn.nuomi. com/); 4) Apriori algorithm is applied to analyze spatial frequent items and spatial association rules in urban service industry of 6 distance thresholds between 10 to 1 000 meters with the obtained data. In case study,the top six registered businesses in“Baidu Nuomi”are snacks and fast food,beauty,hotels,bakeries,sweets and drinks,budget hotels. The spatial association rule of {budget hotels,hotels} has a high degree of confidence and a high upgrading degree in the distance threshold of 10 m and 50 m,being a set of strong spatial association rules. This illustrates the Nanning hotel industry has the characteristics of a compact layout,with all kinds of hotels being together. The spatial association rule of {sweet drinks,snacks and fast food} is a set of strong spatial association rules in the distance threshold of 50 m,500 m and 1 000 m. Snacks and fast food frequency is very high,especially in the succeeding rules with high support degree. In different distance thresholds,as a kind of mass consumer entity service,snacks and fast food restaurants are distributed around various industries. Because the lift degree of these rules is about 1,the snacks and fast food industry has the characteristics of no connection with other industries. This study is an attempt to use ubiquitous web data around us to analyze city management. Researchers can get a steady flow of big data so as to better carry out the studies on city big data in real time with this methods and thoughts.
来源 地理科学 ,2017,37(9):1310-1317 【核心库】
DOI 10.13249/j.cnki.sgs.2017.09.003
关键词 大数据 ; 关联规则 ; Apriori算法 ; 服务业 ; 南宁市
地址

1. 广西大学数学与信息科学学院, 广西, 南宁, 530004  

2. 广西大学公共管理学院, 广西, 南宁, 530004

语种 中文
文献类型 研究性论文
ISSN 1000-0690
学科 社会科学总论
基金 国家自然科学基金项目 ;  国家社会科学基金
文献收藏号 CSCD:6083832

参考文献 共 18 共1页

1.  薛东前. 西安市生产者服务业空间布局特征与集聚模式研究. 地理科学,2011,31(10):1195-1201 被引 23    
2.  王峰. 基于PMR架构的兴趣点推荐研究. 中国科学:信息科学,2015,45(11):1503-1520 被引 4    
3.  李佳洺. 中国生产性服务业空间集聚特征与模式研究——基于地级市的实证分析. 地理科学,2014,34(4):385-393 被引 18    
4.  Zheng Y. Methodologies for Cross-Domain Data Fusion: An Overview. IEEE Transactions on Big Data,2015,1(1):16-34 被引 28    
5.  Zheng Y. Urban computing:Concepts, methodologies,and applications. ACM Trans. Intell.Syst. Technol,2014,5(3):38-55 被引 33    
6.  Zheng Y. Trajectory data mining: An overview. ACM Trans. Intell. Syst. Technol,2015,6(3):1-29 被引 58    
7.  Zheng Y. Learning travel recommendations from usergenerated GPS traces. ACM Trans. Intell. Syst. Technol,2011,2(1):2-19 被引 11    
8.  Nicholas J Y. Discovering Urban Functional Zones Using Latent Activity Trajectories. IEEE Transactions on Knowledge and Data Engineering,2016,27(3):712-725 被引 1    
9.  Xiao X Y. Inferring social ties between users with human location history. J Ambient Intell Human Comput,2014,5(1):3-19 被引 6    
10.  Zheng Y. Recommending friends and locations based on individual location history. ACM Transactions on theWeb,2011,5(1):1-5 被引 16    
11.  甄峰. 城市汽车服务业空间集聚特征研究:以南京市为例. 地理科学,2012,32(10):1200-1208 被引 14    
12.  Agrawal R. Mining association rules between sets of items in large databases. Acm Sigmod Record,1993,22(2):207-216 被引 91    
13.  高源. 中国海洋产业空间集聚及其协调发展研究. 地理科学,2015,35(8):946-951 被引 10    
14.  Adomavicius G. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions. IEEE Transactions on Knowledge & Data Engineering,2005,17(6):734-749 被引 459    
15.  Linden G. Amazon.com Recommendations: Item-to-Item Collaborative Filtering. IEEE Internet Computing,2003,7(1):76-80 被引 266    
16.  Khorsand A. Introduction to arules-A computational environment for mining association rules and frequent item sets. Journal of Statistical Software,2010,14(15):1-25 被引 1    
17.  Hahsler M. The arules R-Package Ecosystem: Analyzing Interesting Patterns from Large Transaction Data Sets. Journal of Machine Learning Research,2011,12(12):2021-2025 被引 4    
18.  Luscher P. Exploiting empirical knowledge for automatic delineation of city centres from large-scale topographic databases. Computers Environment & Urban Systems,2013,37(1):1733-1738 被引 14    
引证文献 11

1 杨智威 基于自然区块的城市热环境空间分异性研究 地理科学进展,2019,38(12):1944-1956
被引 6

2 张国俊 珠江三角洲地区服务业与城镇化协调关系的时空演变 地理科学,2018,38(7):1118-1128
被引 8

显示所有11篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号