利用脑成像多体素模式分析解码认知的神经表征:原理和应用
Decoding the Representation of Cognition:the Principles and Applications of MVPA
查看参考文献33篇
文摘
|
多体素模式分析(multi-voxel pattern analysis,MVPA)是一种基于机器学习理论发展出来的新的功能磁共振数据分析技术.MVPA技术通过训练分类器,对由不同认知状态引起的多体素信号模式进行分类.与传统的基于单个体素的分析方法相比,该技术可更敏感地检测脑对认知状态的表征,并使得从神经信号解码认知状态成为可能.文章介绍MVPA技术的基本原理,分析步骤以及可以用MVPA来解决的科学问题,并对应用中可能面临的问题提供了参考建议 |
其他语种文摘
|
Multi-voxel pattern analysis(MVPA),which is based on machine learning theories,has gained great popularity over the past years as a new approach for fMRI data analysis.By training a classifier,MVPA categorizes multi-voxel patterns tuned by different cognitive states.Compared to conventional voxel-wise methods,this new approach provide higher sensitivity for detecting cognitive representations in the brain.It opens up the possibility for "reading out" mental states of human beings from the non-invasive recordings of brain activities.This paper introduce the fundamental principles of MVPA and the basic realization procedures.Scientific questions that may be properly addressed with this new approach and potential problems in its applications are also discussed |
来源
|
心理科学进展
,2010,18(12):1934-1941 【扩展库】
|
关键词
|
多体素模式分析
;
表征
;
功能磁共振成像
;
分类
|
地址
|
1.
西南大学心理学院, 中国科学院心理学研究所脑高级功能实验室, 重庆, 400715
2.
中国科学院心理学研究所, 中国科学院脑高级功能实验室, 北京, 100101
3.
西南大学心理学院, 重庆, 400715
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1671-3710 |
学科
|
社会科学总论 |
文献收藏号
|
CSCD:4107869
|
参考文献 共
33
共2页
|
1.
Aguirre G K. Continuous carry-over designs for fMRI.
Neuroimage,2007,35(4):1480-1494
|
CSCD被引
1
次
|
|
|
|
2.
Cox D D. Functional magnetic resonance imaging(fMRI)'brain reading':detecting and classifying distributed patterns of fMRI activity in human visual cortex.
Neuroimage,2003,19(2):261-270
|
CSCD被引
15
次
|
|
|
|
3.
Davatzikos C. Classifying spatial patterns of brain activity with machine learning methods:application to lie detection.
Neuroimage,2005,28(11):663-668
|
CSCD被引
7
次
|
|
|
|
4.
De Martino F. Combining multivariate voxels election and support vector machines for mapping and classification of fmri spatial patterns.
Neuroimage,2008,43(1):44-58
|
CSCD被引
10
次
|
|
|
|
5.
Grill-Spector K. fMRI-adaptation:a tool for studying the functional properties of human cortical neurons.
Acta Psychologica,2001,107(1/3):293-321
|
CSCD被引
7
次
|
|
|
|
6.
Hanson S J. Combinatorial codes in ventral temporal lobe for object recognition:Haxby(2001).revisited is there a'face'area.
Neuroimage,2004,23(1):156-166
|
CSCD被引
5
次
|
|
|
|
7.
Harrison S A. Decoding reveals the contents of visual working Memory in early visual areas.
Nature,2009,458(7238):632-635
|
CSCD被引
15
次
|
|
|
|
8.
Hasson U. Intersubject synchronization of cortical activity during natural vision.
Science,2004,303(5664):1634-1640
|
CSCD被引
16
次
|
|
|
|
9.
Haynes J D. Predicting the orientation of invisible stimuli from activity in primary visual cortex.
Nature Neuroscience,2005,8(5):686-691
|
CSCD被引
5
次
|
|
|
|
10.
Haynes J D. Predicting the stream of consciousness from activity in human visual cortex.
CurrentBiology,2005,15(14):1301-1307
|
CSCD被引
2
次
|
|
|
|
11.
Haynes J D. Decoding mental states from brain activity in humans.
Nature Reviews Neuroscience,2006,7(7):523-534
|
CSCD被引
14
次
|
|
|
|
12.
Hutchinson R. Hidden process models.
Proceedings of the 23rd international conference on Machine learning,2006:433-440
|
CSCD被引
1
次
|
|
|
|
13.
Kamitani Y. Decoding the visual and subjective contents of the human brain.
Nature Neuroscience,2005,8:679-685
|
CSCD被引
19
次
|
|
|
|
14.
Kamitani Y. Decoding Seen and attended motion directions from activity in the human visual cortex.
Current Biology,2006,16(11):1096-1102
|
CSCD被引
4
次
|
|
|
|
15.
Kanwisher N. Domain specificity in face perception.
Nature Neuroscience,2000,3(8):759-763
|
CSCD被引
9
次
|
|
|
|
16.
Kay K N. Identifying natural images from human brain activity.
Nature,2008,452:352-355
|
CSCD被引
18
次
|
|
|
|
17.
Kriegeskorte N. Individual faces elicit distinct response patterns in human anterior temporal cortex.
PNAS,2007,104(51):20600-20605
|
CSCD被引
1
次
|
|
|
|
18.
MacEvoy S P. Decoding the representation of multiple simultaneous objects in human occipitotemporal cortex.
CurrentBiology,2009,19(11):1-5
|
CSCD被引
1
次
|
|
|
|
19.
Mitchell T M.
Machine Learning,1997
|
CSCD被引
109
次
|
|
|
|
20.
Mitchell T M. Learning to decode cognitive states from brain images.
Machine Learnin,2004,5:145-175
|
CSCD被引
7
次
|
|
|
|
|