锌同位素在行星科学中的研究进展
Advances of zinc isotope researches in the planetary science
查看参考文献108篇
文摘
|
近年来有关太阳系天体中等挥发性元素的研究掀起了一波浪潮。锌作为中等挥发性元素,其稳定同位素对于高温挥发过程具有很好的指示作用。因此,在行星科学领域锌同位素逐渐成为研究星云和行星演化的一个理想工具。本文系统地归纳了各类陨石和行星天体储库的锌同位素组成,并对不同种类的陨石以及地外样品(碳质球粒陨石、普通球粒陨石、顽火辉石球粒陨石、橄辉无球粒陨石、铁陨石、石铁陨石、月球陨石和Apollo样品、火星陨石、灶神星陨石等)中的锌稳定同位素研究内容进行了较全面的总结。主要包括不同陨石和行星锌同位素组成的控制因素以及锌同位素对太阳系内星云过程和行星过程的指示;同时,简要论述了锌同位素在太阳系形成和演化过程中的分馏机制,并立足目前的研究基础,探讨锌同位素在行星科学领域的研究前景和发展趋势。 |
其他语种文摘
|
In recent years, the research on moderately volatile elements in solar system bodies has sparked a wave of interest. As a member of moderately volatile elements, zinc (Zn) and its isotopes are good indicators for tracing the high-temperature evaporation process. Hence, the Zn isotope is considered as an ideal tool to study the evolution of solar nebula and planets in the planetary science. Here, we have systematically summarized the Zn isotopic compositions of various meteorites and planetary reservoirs, and have provided a comprehensive overview on the zinc stable isotope researches of different types of meteorites and extraterrestrial samples (carbonaceous chondrites, ordinary chondrites, enstatite chondrites, angrites, iron meteorites, stony-iron meteorites, lunar meteorites and Apollo samples, Martian meteorites, Vesta meteorites, etc.). Those researches were mainly concentrated on the controlling factors of zinc isotope composition in different meteorites and planets and the indication of zinc isotopes for the nebular processes and planetary processes in the solar system. At the same time, we have briefly discussed the fractionation mechanism of zinc isotopes in the formation and evolution process of the solar system, and have explored the prospects and development trends of zinc isotope researches in the planetary science on the basis of previous researches. |
来源
|
矿物学报
,2023,43(3):273-283 【核心库】
|
DOI
|
10.16461/j.cnki.1000-4734.2023.43.021
|
关键词
|
锌同位素
;
陨石
;
挥发性元素
;
太阳系演化
|
地址
|
1.
中国科学院地球化学研究所月球与行星科学研究中心, 贵州, 贵阳, 550081
2.
中国科学院大学, 北京, 100049
3.
中国科学院比较行星卓越创新中心, 中国科学院比较行星卓越创新中心, 安徽, 合肥, 230026
4.
中国科学院地球化学研究所, 矿床地球化学国家重点实验室, 贵州, 贵阳, 550081
5.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵州, 贵阳, 550081
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1000-4734 |
学科
|
地质学 |
基金
|
民用航空航天技术预研项目
;
国家自然科学基金项目
;
贵州省项目
|
文献收藏号
|
CSCD:7470636
|
参考文献 共
108
共6页
|
1.
Palme H. Moderately volatile elements.
Meteorites and the early solar system,1988:436-461
|
CSCD被引
3
次
|
|
|
|
2.
Davis A M. University of Arizona Press Tucson, AZ, 2006. Volatile evolution and loss.
Meteorites and the early solar system II,2006,1:295-307
|
CSCD被引
1
次
|
|
|
|
3.
Wood B J. The condensation temperatures of the elements: A reappraisal.
American Mineralogist,2019,104(6):844-856
|
CSCD被引
4
次
|
|
|
|
4.
Moynier F. Isotopic composition of zinc, copper, and iron in lunar samples.
Geochimica et Cosmochimica Acta,2006,70(24):6103-6117
|
CSCD被引
19
次
|
|
|
|
5.
Moynier F. Isotopic fractionation of zinc in tektites.
Earth and Planetary Science Letters,2009,277(3/4):482-489
|
CSCD被引
6
次
|
|
|
|
6.
Ben Othman D. Cu-Zn isotopic variations in the Earth's mantle.
Geochimica et Cosmochimica Acta,2006,70(18):A46
|
CSCD被引
12
次
|
|
|
|
7.
Chen H. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth.
Earth and Planetary Science Letters,2013,369/370:34-42
|
CSCD被引
19
次
|
|
|
|
8.
Paniello R C. Zinc isotopic evidence for the origin of the Moon.
Nature,2012,490(7420):376-379
|
CSCD被引
19
次
|
|
|
|
9.
Chen H. Zinc isotopic composition of iron meteorites: Absence of isotopic anomalies and origin of the volatile element depletion.
Meteoritics & Planetary Science,2013,48(12):2441-2450
|
CSCD被引
2
次
|
|
|
|
10.
Pringle E A. The origin of volatile element depletion in early solar system material: Clues from Zn isotopes in chondrules.
Earth and Planetary Science Letters,2017,468:62-71
|
CSCD被引
9
次
|
|
|
|
11.
Sossi P A. Zinc isotope composition of the Earth and its behaviour during planetary accretion.
Chemical Geology,2017,477:73-84
|
CSCD被引
1
次
|
|
|
|
12.
Blix R. A search for variations in the relative abundance of the zinc isotopes in nature.
Geochimica et Cosmochimica Acta,1957,11(3):162-164
|
CSCD被引
6
次
|
|
|
|
13.
Filby R H. The determination of zinc in rocks by neutron activation analysis.
Analytica Chimica Acta,1964,31:557-562
|
CSCD被引
1
次
|
|
|
|
14.
Loss R D. The isotopic composition of zinc, palladium, silver, cadmium, tin, and tellurium in acid-etched residues of the Allende meteorite.
Geochimica et Cosmochimica Acta,1990,54(12):3525-3536
|
CSCD被引
2
次
|
|
|
|
15.
Rosman K J R. A survey of the isotopic and elemental abundance of zinc.
Geochimica et Cosmochimica Acta,1972,36(7):801-819
|
CSCD被引
17
次
|
|
|
|
16.
Ghidan O Y. Isotope fractionation and concentration measurements of Zn in meteorites determined by the double spike, IDMS-TIMS techniques: Isotopic composition of Zn in meteorites.
Meteoritics & Planetary Science,2011,46(6):830-842
|
CSCD被引
1
次
|
|
|
|
17.
Marechal C N. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry.
Chemical geology,1999,156(1/4):251-273
|
CSCD被引
98
次
|
|
|
|
18.
Ponzevera E. Mass discrimination during MC-ICPMS isotopic ratio measurements: investigation by means of synthetic isotopic mixtures (IRMM-007 series) and application to the calibration of natural-like zinc materials (including IRMM-3702 and IRMM-651).
Journal of the American Society for Mass Spectrometry,2006,17(10):1413-1427
|
CSCD被引
6
次
|
|
|
|
19.
Chen S. Zinc Isotopic Compositions of NIST SRM 683 and Whole-Rock Reference Materials.
Geostandards and Geoanalytical Research,2016,40(3):417-432
|
CSCD被引
8
次
|
|
|
|
20.
Wang Z Z. Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth's upper mantle.
Geochimica et Cosmochimica Acta,2017,198:151-167
|
CSCD被引
13
次
|
|
|
|
|