基于深度学习的单帧图像超分辨率重建综述
A Review of Single Image Super-Resolution Reconstruction Based on Deep Learning
查看参考文献158篇
文摘
|
图像超分辨率重建是计算机视觉中的基本图像处理技术之一,不仅可以提高图像分辨率改善图像质量,还可以辅助其他计算机视觉任务.近年来,随着人工智能浪潮的兴起,基于深度学习的图像超分辨率重建也取得了显著进展.本文在简述图像超分辨率重建方法的基础上,全面综述了基于深度学习的单帧图像超分辨率重建的技术架构及研究历程,包括数据集构建方式、网络模型基本框架以及用于图像质量评估的主、客观评价指标,重点介绍了根据网络结构及图像重建效果划分的基于卷积神经网络的方法、基于生成对抗网络的方法以及基于Transformer的方法,并对相关网络模型加以评述和对比,最后依据网络模型和超分辨率重建挑战赛相关内容,展望了图像超分辨率重建未来的发展趋势. |
其他语种文摘
|
Image super-resolution reconstruction is one of the basic image processing techniques in computer vision, which can not only improve image resolution and image quality, but also assist other computer vision tasks. In recent years, with the rise of artificial intelligence, deep-learning-based image super-resolution reconstruction has also made remarkable progress. Based on a brief description of the image super-resolution reconstruction methodology, this paper comprehensively reviews the technical architecture and research process of deep-learning-based single image super-resolution reconstruction, including the method of datasets construction, the basic framework of the network model, the subjective and objective evaluation metrics for image quality evaluation. The methods based on convolutional neural networks, generative adversarial networks and Transformer, which are divided according to network structure and image reconstruction effect are mainly introduced, and related network models are reviewed and compared. Finally, the future development trend of image superresolution reconstruction is prospected according to the related content of network model and super-resolution reconstruction challenges. |
来源
|
电子学报
,2022,50(9):2265-2294 【核心库】
|
DOI
|
10.12263/DZXB.20220091
|
关键词
|
超分辨率重建
;
深度学习
;
单帧图像
;
卷积神经网络
;
生成对抗网络
;
Transformer
;
挑战赛
|
地址
|
1.
福州大学机械工程及自动化学院, 福建, 福州, 350116
2.
福州大学先进技术创新研究院, 福建, 福州, 350116
3.
福州大学计算机与大数据学院, 福建, 福州, 350116
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:7323076
|
参考文献 共
158
共8页
|
1.
Dai D X. Is image superresolution helpful for other vision tasks?.
2016 IEEE Winter Conference on Applications of Computer Vision,2016:1-9
|
CSCD被引
1
次
|
|
|
|
2.
Bai Y C. SOD-MTGAN: Amall object detection via multi-task generative adversarial network.
Proceedings of the European Conference on Computer Vision(ECCV 2018),2018:210-226
|
CSCD被引
1
次
|
|
|
|
3.
Bei Y J. New techniques for preserving global structure and denoising with low information loss in single-image super-resolution.
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops(CVPRW),2018:987-9877
|
CSCD被引
1
次
|
|
|
|
4.
吴秀秀. 基于配准的肺4D-CT图像超分辨率重建.
电子学报,2015,43(2):383-386
|
CSCD被引
5
次
|
|
|
|
5.
Yin Y. Joint super-resolution and alignment of tiny faces.
Proceedings of the AAAI Conference on Artificial Intelligence,2020,34(7):12693-12700
|
CSCD被引
1
次
|
|
|
|
6.
Huang Y W. Super-resolution and inpainting with degraded and upgraded generative adversarial networks.
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,2021:645-651
|
CSCD被引
1
次
|
|
|
|
7.
Wang Z Y. Ultra-dense GAN for satellite imagery super-resolution.
Neurocomputing,2020,398:328-337
|
CSCD被引
6
次
|
|
|
|
8.
Gao G W. Constructing multilayer locality-constrained matrix regression framework for noise robust face super-resolution.
Pattern Recognition,2021,110:107539
|
CSCD被引
1
次
|
|
|
|
9.
李云红. 基于学习的图像超分辨重建方法综述.
计算机工程与应用,2018,54(15):13-21
|
CSCD被引
9
次
|
|
|
|
10.
孙旭. 基于深度学习的图像超分辨率复原研究进展.
自动化学报,2017,43(5):697-709
|
CSCD被引
38
次
|
|
|
|
11.
刘颖. 图像超分辨率技术的回顾与展望.
计算机科学与探索,2020,14(2):181-199
|
CSCD被引
14
次
|
|
|
|
12.
Harris J L. Diffraction and resolving power.
Journal of the Optical Society of America,1964,54(7):931-936
|
CSCD被引
88
次
|
|
|
|
13.
Goodman J W. Introduction to fourier optics.
Physics Today,1969,22(4):97-101
|
CSCD被引
2
次
|
|
|
|
14.
Tsai R Y. Multiframe image restoration and registration.
Advances in Computer Vision and Image Processing,1984,1(2):317-339
|
CSCD被引
118
次
|
|
|
|
15.
Duchon C E. Lanczos filtering in one and two dimensions.
Journal of Applied Meteorology,1979,18(8):1016-1022
|
CSCD被引
206
次
|
|
|
|
16.
Keys R. Cubic convolution interpolation for digital image processing.
IEEE Transactions on Acoustics, Speech, and Signal Processing,1981,29(6):1153-1160
|
CSCD被引
252
次
|
|
|
|
17.
Stark H. High-resolution image recovery from image-plane arrays, using convex projections.
Journal of the Optical Society of America. A, Optics and Image Science,1989,6(11):1715-1726
|
CSCD被引
142
次
|
|
|
|
18.
Irani M. Improving resolution by image registration.
CVGIP: Graphical Models and Image Processing,1991,53(3):231-239
|
CSCD被引
211
次
|
|
|
|
19.
Schultz R R. A Bayesian approach to image expansion for improved definition.
IEEE Transactions on Image Processing,1994,3(3):233-242
|
CSCD被引
81
次
|
|
|
|
20.
伍政华. 基于二阶广义方向性全变分的图像超分辨率重建方法.
电子学报,2017,45(11):2625-2632
|
CSCD被引
3
次
|
|
|
|
|