1200V大容量SiC MOSFET器件研制
Development of 1200V High Capacity SiC MOSFET Devices
查看参考文献14篇
文摘
|
采用平面栅MOSFET器件结构,结合优化终端场限环设计、栅极bus-bar设计、JFET注入设计以及栅氧工艺技术,基于自主碳化硅工艺加工平台,研制了1200V大容量SiC MOSFET器件.测试结果表明,器件栅极击穿电压大于55V,并且实现了较低的栅氧界面态密度.室温下,器件阈值电压为2. 7V,单芯片电流输出能力达到50A,器件最大击穿电压达到1600V.在175℃下,器件阈值电压漂移量小于0. 8V;栅极偏置20V下,泄漏电流小于45nA.研制器件显示出优良的电学特性,具备高温大电流SiC芯片领域的应用潜力. |
其他语种文摘
|
Based on CRRC silicon carbide (SiC) process technology platform, 1200V high capacity SiC metal-oxide semiconductor field-effect transistor (MOSFET) device has been fabricated by adopting ion-implanted JFET region, the optimal termination design,g ate bus-bar design and gate oxidation process. The fabricated SiC MOSFET is based on a planar gate structure. The test results show that the gate breakdown voltage of the device is above 55V and it achieves a relatively lower interface state density. At room temperature, the threshold voltage of the device is 2. 7V. The maximum blocking voltage and the output current capability of fabricated SiC MOSFET is up to 1600V and 50A, respectively. At 175℃, the threshold voltage shift is less than 0. 8V,and the gate leakage current of the device is less than 45nA when the gate voltage is 20V. All of the results show that the fabricated SiC MOSFET has superior electrical characteristics. It occupies a potential in high temperature and high power applications. |
来源
|
电子学报
,2020,48(12):2313-2318 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2020.12.004
|
关键词
|
碳化硅
;
MOSFET
;
栅极bus-bar
;
JFET注入
;
大容量器件
;
低漏电
;
高温半导体
|
地址
|
1.
中国科学院微电子研究所, 北京, 100029
2.
新型功率半导体器件国家重点实验室, 新型功率半导体器件国家重点实验室, 湖南, 株洲, 412001
3.
株洲中车时代半导体有限公司, 湖南, 株洲, 412001
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
基金
|
国家973计划
|
文献收藏号
|
CSCD:6881593
|
参考文献 共
14
共1页
|
1.
Masuda T. A novel truncated V-groove 4H-SiC MOSFET with high avalanche breakdown voltage and low specific on-resistance.
Materials Science Forum,2014,778/780:907-910
|
CSCD被引
1
次
|
|
|
|
2.
Chen Z. A 1200V 60A SiC MOSFET mutil-chip phase-leg module for high-temperature,high frequency applications.
IEEE Transactions on Industrial Electronics,2014,29(5):2307-2320
|
CSCD被引
1
次
|
|
|
|
3.
张波. 宽禁带半导体SiC功率器件发展现状及展望.
中国电子科学研究学报,2009,4(2):111-118
|
CSCD被引
22
次
|
|
|
|
4.
Lemmom A N. Characterization and modeling of 10kV silicon carbide modules for naval applications.
IEEE Journal of Emerging & Selected Topics in Power Electronics,2017,5(1):309-322
|
CSCD被引
1
次
|
|
|
|
5.
Shi Y. Switching characterization and shortcircuit protection of 1200V SiC MOSFET T-type module in PV inverter application.
IEEE Transactions on Industrial Electronics,2017,64(11):9135-9143
|
CSCD被引
3
次
|
|
|
|
6.
Nguyen T T. Gate oxide reliability issues of SiC MOSFETs under short-circuit operation.
IEEE Transactions on Industrial Electronics,2015,30(5):2445-2455
|
CSCD被引
9
次
|
|
|
|
7.
Konishi K. Modeling and evaluation of stacking fault expansion velocity in body diodes of 3. 3kV SiC MOSFET.
Journal of Electronic Materials,2019,48(3):1704-1713
|
CSCD被引
1
次
|
|
|
|
8.
Marzoughi A. Characterization and evaluation of the state-of-the-art 3. 3kV 400A SiC MOSFETs.
IEEE Transactions on Industrial Electronics,2017,64(10):8247-8257
|
CSCD被引
1
次
|
|
|
|
9.
Baliga B J.
Silicon Carbide Power Devices,2008:90-106
|
CSCD被引
1
次
|
|
|
|
10.
杨银堂(译).
碳化硅半导体材料与器件,2012
|
CSCD被引
1
次
|
|
|
|
11.
Wang G. Dynamic and static behavior of packaged silicon carbide MOSFETs in paralleled applications.
IEEE 2014 IEEE Applied Power Electronics Conference and Exposition-APEC 2014,2014:1478-1483
|
CSCD被引
1
次
|
|
|
|
12.
刘恩科.
半导体物理学,2011:96-98
|
CSCD被引
1
次
|
|
|
|
13.
ROHM.
SCT3040KL N-channel SiC Power MOSFET Datasheet,2018
|
CSCD被引
1
次
|
|
|
|
14.
CREE.
C2M0040120D Silicon Carbide Power MOSFET C2MTM MOSFET Technology,2018
|
CSCD被引
1
次
|
|
|
|
|