口语句子的韵律边界:窥探言语理解的秘窗
Prosodic boundaries in speech: A window to spoken language comprehension
查看参考文献74篇
文摘
|
韵律边界加工与言语理解紧密相关,最近十几年来逐渐成为心理学和语言学的研究焦点。韵律系统包含若干由小到大的韵律单位,不同单位的韵律成分其边界强度不同,表现在音高、延宕和停顿三个声学线索上的参数也不同。句子的听力理解过程中,听话人运用声学线索感知权重策略对韵律边界的声学线索进行加工。从神经层面上来看,对于韵律边界的加工,大脑显示出独立且特异性的神经机制。韵律边界的加工能力在婴儿出生后随年龄的增长而发展,到了老年阶段则逐渐退化,而且似乎能够对二语迁移。未来,需要扩大对韵律边界声学表现的考查范围,进一步明确韵律边界的加工过程,进一步厘清韵律边界加工和句法加工之间的关系,进一步关注二语者韵律边界加工能力的发展。 |
其他语种文摘
|
The perception of prosodic boundaries is critical to spoken language comprehension, and it has become a primary research topic among psychologists and psycholinguists in the past decade. Utterances are chunked into prosodic units of different strengths. The boundaries between prosodic units are mainly signaled by acoustic cues like pitch change, final lengthening, and pause. Previous cognitive, linguistic, developmental, and neuroimaging studies have significantly advanced our understanding of the processing of prosodic boundaries. We now know that listeners use a perceptual weighting strategy to process prosodic boundary cues, and there are specific brain mechanisms for prosodic boundary processing. The ability to processing prosodic boundaries steadily develops with age in young children and transfers to a second language, but it generally decreases with age in older adults. Future studies should expand the investigation of prosodic boundaries to more pragmatic genres and focus on revealing the cognitive mechanisms underlying prosodic boundary processing, the relationship between prosodic boundary and syntax processing, and the development of prosodic boundary perception in second language learners. |
来源
|
心理科学进展
,2021,29(3):425-437 【核心库】
|
DOI
|
10.3724/SP.J.1042.2021.00425
|
关键词
|
韵律边界
;
言语理解
;
声学表现
;
神经振荡
|
地址
|
1.
华南师范大学心理学院/心理应用研究中心, 脑认知与教育科学教育部重点实验室, 广州, 510631
2.
广州大学外国语学院, 广州, 510030
3.
中国科学院心理研究所, 中国科学院行为科学重点实验室, 北京, 100101
4.
中国科学院大学心理学系, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1671-3710 |
学科
|
社会科学总论 |
基金
|
广东省哲学社会科学"十三五"规划项目
|
文献收藏号
|
CSCD:6925874
|
参考文献 共
74
共4页
|
1.
杨玉芳.
心理语言学,2015
|
CSCD被引
8
次
|
|
|
|
2.
周游. 汉语韵律结构与语法结构的对比分析.
第十四届全国人机语音通讯学术会议(NCMMSC'2017)论文集,2017:205-210
|
CSCD被引
1
次
|
|
|
|
3.
Aasland W. Temporal parameters as cues to phrasal boundaries: A comparison of processing by left-and right-hemisphere brain-damaged individuals.
Brain and Language,2003,87(3):385-399
|
CSCD被引
1
次
|
|
|
|
4.
Bogels S. The interplay between prosody and syntax in sentence processing: The case of subject-and object-control verbs.
Journal of Cognitive Neuroscience,2010,22(5):1036-1053
|
CSCD被引
3
次
|
|
|
|
5.
Bogels S. Processing consequences of superfluous and missing prosodic breaks in auditory sentence comprehension.
Neuropsychologia,2013,51(13):2715-2728
|
CSCD被引
1
次
|
|
|
|
6.
Brodbeck C. Rapid transformation from auditory to linguistic representations of continuous speech.
Current Biology,2018,28(24):3976-3983.e5
|
CSCD被引
3
次
|
|
|
|
7.
Buxo-Lugo A. Evidence for the influence of syntax on prosodic parsing.
Journal of Memory and Language,2016,90:1-13
|
CSCD被引
1
次
|
|
|
|
8.
Cason N. Bridging music and speech rhythm: Rhythmic priming and audio-motor training affect speech perception.
Acta Psychologica,2015,155:43-50
|
CSCD被引
1
次
|
|
|
|
9.
Clahsen H. Some notes on the shallow structure hypothesis.
Studies in Second Language Acquisition,2018,40(3):693-706
|
CSCD被引
1
次
|
|
|
|
10.
Clifton C. Sentence and text Comprehension: Roles of linguistic structure.
Annual Review of Psychology,2001,52:167-196
|
CSCD被引
1
次
|
|
|
|
11.
Clifton C. Informative prosodic boundaries.
Language and Speech,2002,45(2):87-114
|
CSCD被引
2
次
|
|
|
|
12.
Cole J. Prosody in context: A review.
Language, Cognition and Neuroscience,2015,30(1/2):1-31
|
CSCD被引
1
次
|
|
|
|
13.
Cole J. The role of syntactic structure in guiding prosody perception with ordinary listeners and everyday speech.
Language and Cognitive Process,2010,25(7/9):1141-1177
|
CSCD被引
1
次
|
|
|
|
14.
Cumming R. Awareness of rhythm patterns in speech and music in children with specific language impairments.
Frontiers in Human Neuroscience,2015,9:672
|
CSCD被引
1
次
|
|
|
|
15.
Dilley L C. Altering context speech rate can cause words to appear or disappear.
Psychological Science,2010,21(11):1664-1670
|
CSCD被引
3
次
|
|
|
|
16.
Ding N. Low-frequency neural activity reflects rule-based chunking during speech listening.
bioRxiv,2019:742585v1
|
CSCD被引
1
次
|
|
|
|
17.
Ding N. Robust cortical entrainment to the speech envelope relies on the spectro-temporal fine structure.
Neuroimage,2014,88:41-46
|
CSCD被引
2
次
|
|
|
|
18.
Ding N. Cortical tracking of hierarchical linguistic structures in connected speech.
Nature Neuroscience,2015,19(1):158-164
|
CSCD被引
2
次
|
|
|
|
19.
Ding N. Attention is required for knowledge-based sequential grouping: Insights from the integration of syllables into words.
Journal of Neuroscience,2018,38(5):1178-1188
|
CSCD被引
4
次
|
|
|
|
20.
Doelling K B. Acoustic landmarks drive delta-theta oscillations to enable speech comprehension by facilitating perceptual parsing.
Neuroimage,2014,85:761-768
|
CSCD被引
5
次
|
|
|
|
|