帮助 关于我们

返回检索结果

跨临界二氧化碳热泵喷射循环实验
Transcritical CO_2 heat pump system with an ejector

查看参考文献21篇

文摘 在跨临界CO_2热泵热水器系统中引入优化设计的喷射器,对系统进行实验研究,分析了制热系数、引射比、升压比、喷射器效率等参数随热水体积流量和出口温度及高压侧压力的变化趋势以及优化设计的喷射器对系统的影响。实验结果表明:随着热水体积流量减小或其出口温度增加,引射比将逐渐减小,而喷射器效率逐渐升高;在测试工况范围内升压比基本保持不变,系统COP_h最高将近3.5;系统高压侧的压力因优化喷射器的引入而明显降低,有利于系统的安全运行;跨临界二氧化碳热泵喷射循环系统存在一个最优运行压力,值得注意的是在最优运行压力下,热水出水温度虽未达到最高,但依旧超过55℃。系统稳定运行在最优高压侧压力下,不仅系统性能大幅度提高,而且保证了热水的出水温度。
其他语种文摘 An optimized design of the ejector was presented, which was applied to a transcritical CO_2 heat pump as an experimental water heater system. Experiments were carried out not only to investigate the effects of flow rate and outlet temperature of hot water and the high-side pressure on the system and the ejector performance, such as the heating coefficient of performance (COP_h), entrainment ratio, pressure lift and ejector efficiency, but also to reflect the ejector influence on system performance. The experimental results show that though the ejector efficiency was related to the entrainment ratio, their change with the hot water flow rate or the outlet temperature were different. In the other word, the entrainment ratio was decreased while the ejector efficiency was increased with the decrease of the cooling water flow rate or the increase of the outlet temperature. Under the experimental working conditions, pressure lift was kept constant and the COP_h reached about 3.5. With this ejector, high side optimal pressure decreased dramatically, which results in safer operation for this system. However when the COP_h reached the highest value, the ejector efficiency was not the best one. The experimental results also showed that there existed an optimal operation pressure for the transcritical CO_2 heat pump with the ejector. What should be noted was under optimal hide side pressure, hot water outlet temperature was not the highest value but still more than 55℃. Therefore stable operation in the optimal high side pressure for the heat pump system is of great significance. It can not only greatly improve system performance, but also ensure attain higher water temperature of the hot water.
来源 化工学报 ,2016,67(4):1520-1526 【核心库】
DOI 10.11949/j.issn.0438-1157.20150905
关键词 喷射器 ; 优化设计 ; 热力学 ; CO_2 ; 跨临界循环 ; 热泵 ; COP_h
地址

中国科学院广州能源研究所, 中国科学院可再生能源重点实验室;;中国科学院先进能源系统实验室, 广东, 广州, 510640

语种 中文
文献类型 研究性论文
ISSN 0438-1157
学科 一般工业技术
基金 国家973计划 ;  广东省中国科学院全面战略合作项目
文献收藏号 CSCD:5677195

参考文献 共 21 共2页

1.  Cen J L. A novel transcritical CO_2 refrigeration cycle with two ejectors. International Journal of Refrigeration,2012,35(8):2233-2239 CSCD被引 1    
2.  Yari M. Thermodynamic analysis and optimization of novel ejector-expansion TRCC (transcritical CO_2) cascade refrigeration cycles (novel transcritical CO_2 cycle). Energy,2011,36(12):6839-6850 CSCD被引 3    
3.  Aprea C. An experimental evaluation of the transcritical CO_2 refrigerator performances using an internal heat exchanger. International Journal of Refrigeration,2008,31(6):1006-1011 CSCD被引 15    
4.  Zhang F Z. Efficiencies of subcritical and transcritial CO_2 inverse cycles with and without an internal heat exchanger. Applied Thermal Engineering,2011,31(4):432-438 CSCD被引 12    
5.  Kim H J. Numerical simulation on scroll expander-compressor unit for CO_2 transcritical cycles. Applied Thermal Engineering,2008,28(13):1654-1661 CSCD被引 9    
6.  Elbel S. Ejector refrigeration: an overview of historical and present developments with an emphasis on air conditioning applications. International Refrigeration and Air Conditioning Conference,2008 CSCD被引 2    
7.  Elbel S. Historical and present developments of ejector refrigeration systems with emphasis on transcritical carbon dioxide air-conditioning applications. International Journal of Refrigeration,2011,34(7):1545-1561 CSCD被引 13    
8.  Sarkar J. Optimization of ejector-expansion transcritical CO_2 heat pump cycle. Energy,2008,33(9):1399-1406 CSCD被引 13    
9.  Yari M. Performance analysis and optimization of a new two-stage ejector-expansion trancritical CO_2 refrigeration cycle. International Journal of Thermal Sciences,2009,48(10):1997-2005 CSCD被引 9    
10.  Yang J L. Performance investigation of transcritical carbon dioxide two-stage compression cycle with expander. Energy,2007,32(3):237-245 CSCD被引 8    
11.  Torrella E. Energetic evaluation of an internal heat exchanger in a CO_2 transcritical refrigeration plant using experimental data. International Journal of Refrigeration,2011,34(1):40-49 CSCD被引 17    
12.  Sarkar J. Cycle parameter optimization of vortex tube expansion transcritical CO_2 system. International Journal of Thermal Sciences,2008,48(9):1823-1828 CSCD被引 6    
13.  Lee J S. Experimental study on the improvement of CO_2 air conditioning system performance using an ejector. International Journal of Refrigeration,2011,34(7):1614-1625 CSCD被引 11    
14.  Yoon S H. Heat transfer and pressure drop characteristics during the in-tube cooling process of carbon dioxide in the supercritical region. International Journal of Refrigeration,2003,26(8):857-864 CSCD被引 28    
15.  Banasiak K. Experimental and numerical investigation of the influence of the two-phase ejector geometry on the performance of the R744 heat pump. International Journal of Refrigeration,2012,35(6):1617-1625 CSCD被引 11    
16.  Elbel S. Experimental and analytical investigation of a two-phase ejector used for expansion work recovery in a transcritical R744 air-conditioning system,2007 CSCD被引 3    
17.  Nakagawa M. Experimental investigation on the effect of mixing length on the performance of two-phase ejector for CO_2 refrigeration cycle with and without heat exchanger. International Journal of Refrigeration,2011,34(7):1604-1613 CSCD被引 17    
18.  Elbel S. Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation. International Journal of Refrigeration,2008,31(3):411-422 CSCD被引 29    
19.  Steele W G. Comparison of ANSI/ASME and ISO models for calculation of uncertainty. ISA Transactions,1994,33(4):339-352 CSCD被引 1    
20.  Xu X X. Experimental investigation on performance of transcritical CO_2 heat pump system with ejector under optimum high-side pressure. Energy,2012,44(1):870-877 CSCD被引 9    
引证文献 6

1 秦敬轩 不同出入口条件下气液喷射器喷射性能的数值模拟 过程工程学报,2017,17(3):469-476
CSCD被引 0 次

2 秦敬轩 考虑温度相变气液喷射器喷射性能瞬态模拟 化学工程,2018,46(2):41-46
CSCD被引 0 次

显示所有6篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号