基于土壤水分和气象要素的林火预报研究—以广东省为例
Forest Fire Prediction Based on Soil Moisture and Meteorological Factors: Taking Guangdong Province As An Example
查看参考文献36篇
文摘
|
基于国内现行的森林火险气象指数和单因子火险贡献度模型,以及逻辑回归模型和随机森林模型,在林火预报中引入微波遥感土壤水分信息,使用MCD14DL火点数据集和地面气象观测资料对广东省不同时间尺度的林火发生概率进行预测。结果表明:逻辑回归模型和随机森林模型构建的林火预测模型显著优于现行的森林火险气象指数和单因子火险贡献度模型,预测精度提升约20%。其中,随机森林模型对林火频数的解释程度最高(两者相关系数为0.476)。此外,加入微波土壤水分信息后,相较原有的基于气象要素的林火预测模型,2种机器学习模型的预测精度均略有提升,体现了表层土壤水分信息在林火预报中的重要性。研究可为高效提取对地观测信息,以改进华南地区不同时间尺度的林火预报工作提供参考。 |
其他语种文摘
|
In this article, four methods including current operational forest fire danger index, single-factor contribution model, logistic regression model and random forest model, are inter-compared for their prediction accuracies of forest fire probability at daily and monthly timescales in Guangdong Province. Excepting for the daily meteorological observations and MCD14DL Active Fire product, the microwave-based soil moisture dataset is also included in the latter two machine learning models, in order to evaluate their potential utilities in forest fire prediction. The results show that the logistic regression and random forest models significantly outperform the current forest fire danger index and the historical single-factor contribution model, increasing the accuracy by approximately 20%. The normalized forest fire probability from random forest model prediction are strongly correlated with the normalized active fire number (MCD14DL), showing correlation coefficient of 0.476. In addition, inclusion of soil moisture information in the meteorological factors-based model slightly increases model accuracy, which evidences the importance of surface soil moisture in forest fire prediction. The results of this study could provide reference for efficiently mining earth observations to improve forest fire prediction at different time scales, and therefore improve regional disaster preparedness measures. |
来源
|
地理科学
,2021,41(9):1676-1686 【核心库】
|
DOI
|
10.13249/j.cnki.sgs.2021.09.019
|
关键词
|
广东省
;
森林火灾预测
;
土壤水分
;
逻辑回归模型
;
随机森林模型
|
地址
|
1.
中山大学地理科学与规划学院, 广东省城市化与地理环境空间模拟重点实验室, 广东, 广州, 510275
2.
中山大学土木工程学院, 广东, 广州, 510275
3.
清华大学地球系统科学系, 北京, 100084
4.
广东省林火卫星监测中心, 广东, 广州, 510060
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0690 |
学科
|
林业 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:7087187
|
参考文献 共
36
共2页
|
1.
Venkatesh K. Evaluating the effects of forest fire on water balance using fire susceptibility maps.
Ecological Indicators,2020,110:105856
|
CSCD被引
2
次
|
|
|
|
2.
Gonzalez-De Vega S. Resilience of Mediterranean terrestrial ecosystems and fire severity in semiarid areas: Responses of Aleppo pine forests in the short, mid and long term.
Science of the Total Environment,2016,573:1171-1177
|
CSCD被引
3
次
|
|
|
|
3.
马岩. 森林火灾的危害及重要灭火手段的分析.
森林工程,2013(6):25-27
|
CSCD被引
2
次
|
|
|
|
4.
Mohammadi F. Forest fire risk zone modeling using logistic regression and GIS: An Iranian case study.
Small-scale Forestry,2014,13(1):117-125
|
CSCD被引
4
次
|
|
|
|
5.
田晓瑞. 中国主要生态地理区的林火动态特征分析.
林业科学,2015(9):71-77
|
CSCD被引
12
次
|
|
|
|
6.
Drobyshev I. Forest fire activity in Sweden: Climatic controls and geographical patterns in 20th century.
Agricultural and Forest Meteorology,2012,154/155:174-186
|
CSCD被引
6
次
|
|
|
|
7.
Rother M T. Climatic influences on fire regimes in ponderosa pine forests of the Zuni Mountains, NM, USA.
Forest Ecology and Management,2014,322:69-77
|
CSCD被引
1
次
|
|
|
|
8.
Desantis R D. Drought and fire suppression lead to rapid forest composition change in a forestprairie ecotone.
Forest Ecology and Management,2011,261(11):1833-1840
|
CSCD被引
2
次
|
|
|
|
9.
Sutanto S J. Heatwaves, droughts, and fires: Exploring compound and cascading dry hazards at the pan-European scale.
Environment International,2020,134:105276
|
CSCD被引
5
次
|
|
|
|
10.
牛若芸. 森林火险气象指数及其构建方法回顾.
气象,2006(12):3-9
|
CSCD被引
19
次
|
|
|
|
11.
Walding N G. A comparison of the US National Fire Danger Rating System (NFDRS) with recorded fire occurrence and final fire size.
International Journal of Wildland Fire,2018,27(2):99-113
|
CSCD被引
4
次
|
|
|
|
12.
Stocks B J. Canadian forest fire danger rating system: An overview.
The Forestry Chronicle,1989,65(4):258-265
|
CSCD被引
10
次
|
|
|
|
13.
Sanabria L A. Spatial interpolation of McArthur’s Forest Fire Danger Index across Australia: Observational study.
Environmental Modelling & Software,2013,50:37-50
|
CSCD被引
4
次
|
|
|
|
14.
Dowdy A J. Index sensitivity analysis applied to the Canadian Forest Fire Weather Index and the McArthur Forest Fire Danger Index.
Meteorological Applications,2009,17(3):298-312
|
CSCD被引
2
次
|
|
|
|
15.
Dimitrakopoulos A P. Evaluation of the Canadian fire weather index system in an eastern Mediterranean environment.
Meteorological Applications,2011,18(1):83-93
|
CSCD被引
3
次
|
|
|
|
16.
Fox D M. How wildfire risk is related to urban planning and Fire Weather Index in SE France (1990-2013).
Science of the Total Environment,2018,621:120-129
|
CSCD被引
4
次
|
|
|
|
17.
Perez-Sanchez J. A comparative study of fire weather indices in a semiarid southeastern Europe region.
Case of study: Murcia (Spain). Science of the Total Environment,2017,590/591:761-774
|
CSCD被引
1
次
|
|
|
|
18.
Tian X. Wildfires and the Canadian forest fire weather index system for the Daxing’anling region of China.
International Journal of Wildland Fire,2011,20(8):963-973
|
CSCD被引
1
次
|
|
|
|
19.
牛若芸. 森林火险气象指数的应用研究.
应用气象学报,2007(4):479-489
|
CSCD被引
15
次
|
|
|
|
20.
高永刚. 3种森林火险气象指数在黑龙江省北部林区应用效果的对比分析.
东北林业大学学报,2008(11):41-44
|
CSCD被引
2
次
|
|
|
|
|