高选择性二元金属材料电化学还原CO_2的研究进展
Progress in electrochemical reduction of CO_2 by bimetallic materials with high selectivity
查看参考文献59篇
文摘
|
近年来,全球范围因二氧化碳(CO_2)的过量排放导致的环境问题日益严重,引起世界各国人民的广泛关注。电化学还原CO_2转化为清洁能源和高价值化学品,不仅可以有效地缓解CO_2导致的温室效应,而且有望为解决能源危机提供重要出路。本文简述了电化学还原CO_2的反应原理,对近年报道的一些高选择性的二元金属催化剂进行分类归纳。综述了二元金属材料物质组成、原子配比、微观形貌、颗粒尺寸等物化性质对CO_2还原性能的影响规律,并对部分催化剂的选择性增强机理重点分析。最后,讨论了二元金属材料高效选择性电化学还原CO_2存在的主要问题和未来可能的研究重点。 |
其他语种文摘
|
In recent years,the global environmental problems caused by excessive emissions of carbon dioxide(CO_2)have become severe gradually,which attract widespread concern all over the world.The electrochemical reduction of CO_2to clean energy and high-value chemicals not only can effectively alleviate greenhouse effect,but also provide an alternative to solve the energy crisis.The reaction principle of electrochemical reduction of CO_2 was briefly described in this review,and some binary metal catalysts with high product selectivity reported in recent years were classified and summarized. The influences of the bimetallic materials physico-chemical properties,including element and composite,atomic ratio,microscopic morphology,particle size,etc.on CO_2 reduction performance were reviewed,and the explanation of high selectivity for partial typical catalysts derived from DFT calculation was presented.Finally,the main problems and future research challenges for the selective conversion of CO_2 on bimetallic catalysts with high efficiency were also discussed. |
来源
|
材料工程
,2023,51(4):1-14 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2021.001122
|
关键词
|
二氧化碳
;
合金材料
;
电催化
;
选择性
;
催化活性
|
地址
|
1.
西安工业大学材料与化工学院, 西安, 710021
2.
兵器工业卫生研究所科研七室, 西安, 710065
3.
西安交通大学能源与动力工程学院, 西安, 710049
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
行业污染、废物处理与综合利用 |
基金
|
国家自然科学基金项目
;
陕西省自然科学基础研究计划项目
;
陕西省教育厅重点科学研究计划项目
;
西安交通大学基本科研业务费
|
文献收藏号
|
CSCD:7480401
|
参考文献 共
59
共3页
|
1.
Pytlak A. A survey of greenhouse gases production in central European lignites.
Science of the Total Environment,2021,800:149551
|
CSCD被引
1
次
|
|
|
|
2.
Tcvetkov P. Climate policy imbalance in the energy sector: time to focus on the value of CO_2utilization.
Energies,2021,14(2):411
|
CSCD被引
1
次
|
|
|
|
3.
Bhattacharyya S S. A paradigm shift to CO_2sequestration to manage global warming-with the emphasis on developing countries.
Science of the Total Environment,2021,790:148169
|
CSCD被引
3
次
|
|
|
|
4.
Chauvy R. CO_2 Utilization technologies in Europe:a short review.
Energy Technology,2020,8(12):2000627
|
CSCD被引
5
次
|
|
|
|
5.
Mclaren D. Quantifying the potential scale of mitigation deterrence from greenhouse gas removal techniques.
Climatic Change,2020,162(4):2411-2428
|
CSCD被引
1
次
|
|
|
|
6.
Jeffry L. Greenhouse gases utilization:a review.
Fuel,2021,301:121017
|
CSCD被引
22
次
|
|
|
|
7.
Kamkeng A D N. Transformation technologies for CO_2utilization:current status,challenges and future prospects.
Chemical Engineering Journal,2021,409(8):128138
|
CSCD被引
10
次
|
|
|
|
8.
Jo S B. CO_2green technologies in CO_2capture and direct utilization processes:methanation,reverse water-gas shift,and dry reforming of methane.
Sustainable Energy &Fuels,2020,4(11):5543-5549
|
CSCD被引
5
次
|
|
|
|
9.
Norhasyima R S. Advances in CO_2utilization technology:apatent landscape review.
Journal of CO_2 Utilization,2018,26:323-335
|
CSCD被引
9
次
|
|
|
|
10.
魏伟. 二氧化碳资源化利用的机遇与挑战.
化工进展,2011,30(1):216-224
|
CSCD被引
24
次
|
|
|
|
11.
Chen J Y. Recent progress and perspective of electrochemical CO_2 reduction towards C_2–C_5 products over non-precious metal heterogeneous electrocatalysts.
Nano Research,2021,14(9):3188-3207
|
CSCD被引
15
次
|
|
|
|
12.
Somoza-Tornos A. Process modeling,techno-economic assessment,and life cycle assessment of the electrochemical reduction of CO_2:a review.
iScience,2021,24(7):102813
|
CSCD被引
6
次
|
|
|
|
13.
Ma D. An overview of flow cell architecture design and optimization for electrochemical CO_2reduction.
Journal of Materials Chemistry A,2021,9(37):20897-20918
|
CSCD被引
8
次
|
|
|
|
14.
Zhi X. Role of oxygen-bound reaction intermediates in selective electrochemical CO_2reduction.
Energy &Environmental Science,2021,14(7):3912-3930
|
CSCD被引
6
次
|
|
|
|
15.
Chen J Y. Effects of the catalyst dynamic changes and influence of the reaction environment on the performance of electrochemical CO_2reduction.
Advanced Materials,2021,14:2103900
|
CSCD被引
1
次
|
|
|
|
16.
Zhu D D. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide.
Advanced Materials,2016,28(18):3423-3452
|
CSCD被引
131
次
|
|
|
|
17.
Kim C. Alloy nanocatalysts for the electrochemical oxygen reduction(ORR)and the direct electrochemical carbon dioxide reduction reaction(CO_2RR).
Advanced Materials,2019,31(31):1805617
|
CSCD被引
31
次
|
|
|
|
18.
He J. Electrocatalytic alloys for CO_2reduction.
Chemistry & Sustainability,2018,11(1):48-57
|
CSCD被引
1
次
|
|
|
|
19.
宁庆波. 合金元素对锌空气电池阳极电化学性能的影响.
中南大学学报(自然科学版),2021,52(10):3389-3396
|
CSCD被引
1
次
|
|
|
|
20.
Zhang Z. Recent progress in structural modulation of metal nanomaterials for electrocatalytic CO_2reduction.
Rare Metals,2021,40(6):1412-1430
|
CSCD被引
1
次
|
|
|
|
|