潜在高熵陶瓷热障涂层材料的研究进展
Research progress in potential high-entropy ceramic thermal barrier coating materials
查看参考文献99篇
文摘
|
热障涂层(TBC)材料是为航空发动机及燃气轮机提供热防护,延长其使用寿命的一种重要材料。近年对新型热障涂层材料的探索中出现各类高熵稀土氧化物,以期通过热力学上的高熵效应、动力学上的迟滞扩散效应、结构上的晶格畸变效应以及性能上的“鸡尾酒”效应获得优于单主元稀土氧化物的热学、力学、高温相稳定性及抗烧结腐蚀等性能。本文总结归纳了高熵稀土锆酸盐、铈酸盐、铪酸盐、钽酸盐及铌酸盐等五种高熵稀土氧化物的热学性质、力学性质及其他性质,着重强调了热导率和热膨胀系数,同时与相应单组分稀土氧化物的性能进行对比分析,探究影响其性能优劣的多种因素。最后指出未来或可将实验与第一性原理计算相结合,筛选出综合性能更加优异的高熵陶瓷热障涂层材料;同时,将高熵延伸至复杂组分或中熵陶瓷热障涂层材料也成为重要的拓展方向。 |
其他语种文摘
|
Thermal barrier coating (TBC)materials are an important method to provide thermal protection and prolong service life for aero-engines and gas turbines.In recent years,various kinds of high-entropy(HE)rare earth oxides have emerged in the exploration of novel thermal barrier coating materials,in order to obtain thermal,mechanical,high temperature phase stability,sintering corrosion resistance and other properties better than single principal rare earth oxides through HE effect on the thermodynamics and kinetics of hysteresis diffusion effect,the structure of the lattice distortion effect and “cocktail”effect on the performance.The thermal,mechanical and other performances of HE rare-earth zirconates,cerates,hafnates,phosphates,tantalates,niobates,etc.were summarized and analyzed in comparison with the performance of the corresponding single phases to investigate the various factors affecting the performance.Finally,it was pointed out that in the future, it may be possible to combine experiments with first-principles calculations to select high-entropy ceramic thermal barrier coating materials with superior comprehensive performance;at the same time, extending high-entropy to complex components or medium-entropy ceramic thermal barrier coating materials is also an important development direction. |
来源
|
材料工程
,2023,51(7):61-77 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000713
|
关键词
|
热障涂层材料
;
高熵稀土氧化物
;
热导率
;
热膨胀系数
;
力学性能
;
高温相稳定性
|
地址
|
1.
昆明理工大学材料科学与工程学院, 昆明, 650093
2.
中国人民解放军军事科学院国防科技创新研究院, 北京, 100071
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1001-4381 |
学科
|
化学工业 |
基金
|
云南省重大科技专项-稀贵金属材料基因工程
;
云南省基础研究计划项目
|
文献收藏号
|
CSCD:7529775
|
参考文献 共
99
共5页
|
1.
黎明. 国外先进航空发动机技术带给我们的启示.
航空制造技术,2013(9):66-71
|
CSCD被引
2
次
|
|
|
|
2.
Evans A G. Mechanisms controlling the durability of thermal barrier coatings.
Progress in Materials Science,2001,46(5):505-553
|
CSCD被引
197
次
|
|
|
|
3.
周立江. 浅论热障涂层的应用与发展.
航空制造技术,2004(4):83-85
|
CSCD被引
2
次
|
|
|
|
4.
Caron P. Evolution of Ni-based superalloys for single crystal gas turbine blade applications.
Aerospace Science and Technology,1999,3(8):513-523
|
CSCD被引
105
次
|
|
|
|
5.
Clarke D R. Thermal-barrier coatings for more efficient gas-turbine engines.
MRS Bulletin,2012,37(10):891-898
|
CSCD被引
128
次
|
|
|
|
6.
Miller R A. Thermal barrier coatings for aircraft engines:history and directions.
Journal of Thermal Spray Technology,1997,6(1):35-42
|
CSCD被引
120
次
|
|
|
|
7.
Taylor R. Microstructure, composition and property relationships of plasma-sprayed thermal barrier coatings.
Surface &Coatings Technology,1992,50(2):141-149
|
CSCD被引
30
次
|
|
|
|
8.
Ramaswamy P. Thermal barrier coating application of zircon sand.
Journal of Thermal Spray Technology,1999,8(3):447-453
|
CSCD被引
6
次
|
|
|
|
9.
冀晓鹃. 杂质对氧化锆热障涂层性能的影响.
无机材料学报,2020,35(6):669-674
|
CSCD被引
4
次
|
|
|
|
10.
Zhang X F. Adsorbability and spreadability of calcium-magnesium-alumino-silicate(CMAS)on Al-modified 7YSZ thermal barrier coating.
Ceramics International,2016,42(16):19349-19356
|
CSCD被引
9
次
|
|
|
|
11.
姬梅梅. 航空航天用金属表面热防护涂层的研究进展.
表面技术,2021,50(1):253-266
|
CSCD被引
21
次
|
|
|
|
12.
Clarke D R. Materials design for the next generation thermal barrier coatings.
Annual Review of Materials Research,2003,33(1):383-417
|
CSCD被引
76
次
|
|
|
|
13.
Cao X Q. Lanthanum-cerium oxide as a thermal barrier coating material for high-temperature applications.
Advanced Materials,2003,15(17):1438-1442
|
CSCD被引
66
次
|
|
|
|
14.
李迪. 稀土锆酸盐热障涂层材料的研究进展.
耐火材料,2021,55(3):258-263
|
CSCD被引
4
次
|
|
|
|
15.
Lei G. CMAS resistance characteristics of LaPO_4/YSZ thermal barrier coatings at 1250℃-1350℃.
Corrosion Science,2019,154:111-122
|
CSCD被引
1
次
|
|
|
|
16.
Lashmi P G. Hot corrosion properties of plasma sprayed La2Ce2O7/YSZ vis-a-vis La2Ce2O7/cluster paired zirconia thermal barrier coatings.
Surface &Coatings Technology,2021,409:126902
|
CSCD被引
2
次
|
|
|
|
17.
Chen L. Thermal expansion performance and intrinsic lattice thermal conductivity of ferroelastic RETaO_4ceramics.
Journal of the American Ceramic Society,2019,102(8):4809-4821
|
CSCD被引
31
次
|
|
|
|
18.
Michael R W. Oxide materials with low thermal conductivity.
Journal of the American Ceramic Society,2007,90(2):533-540
|
CSCD被引
21
次
|
|
|
|
19.
Wang M. CaO-MgO-Al_2O_3-SiO_2 corrosion behavior of air-plasma-sprayed (LaxYb1-x )2Zr2O7.
Journal of the American Ceramic Society,2019,102(4):2029-2040
|
CSCD被引
4
次
|
|
|
|
20.
Xia J. On the resistance of rare earth oxide-doped YSZ to high temperature volcanic ash attack.
Surface &Coatings Technology,2016,307:534-541
|
CSCD被引
4
次
|
|
|
|
|