Microstructure and properties of A2017 alloy strips processed by a novel process by combining semisolid rolling, deep rolling, and heat treatment
查看参考文献20篇
文摘
|
A novel short process for producing A2017 alloy strips with notable features of near net shape, saving energy, low cost, and high product performance was developed by combining semisolid rolling, deep rolling, and heat treatment. The microstructure and properties of the A2017 alloy strips were investigated by metallographic microscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, tensile testing, and hardness measurement. The cross-sectional microstructure of the A2017 alloy strips is mainly composed of near-spherical primary grains. Many eutectic phases CuAl_2 formed along primary grain boundaries during semisolid rolling are crushed and broken into small particles. After solution treatment at 495°C for 2 h the eutectic phases at grain boundaries have almost dissolved into the matrix. When the solution treatment time exceeds 2 h, grain coarsening happens. More and more grain interior phases precipitate with the aging time prolonging to 8 h. The precipitated particles are very small and distribute homogenously, and the tensile strength reaches its peak value. When the aging time is prolonged to 12 h, there is no obvious variation in the amount of precipitated phases, but the size and spacing of precipitated phases increase. The tensile strength of the A2017 alloy strips produced by the present method can reach 362.78 MPa, which is higher than that of the strips in the national standard of China. |
来源
|
International Journal of Minerals
, Metallurgy and Materials,2013,20(8):770-778 【核心库】
|
DOI
|
10.1007/s12613-013-0795-3
|
关键词
|
aluminum alloys
;
semisolid rolling
;
heat treatment
;
microstructure
;
mechanical properties
|
地址
|
College of Materials and Metallurgy, Northeastern University, Shenyang, 110819
|
语种
|
英文 |
文献类型
|
研究性论文 |
ISSN
|
1674-4799 |
学科
|
金属学与金属工艺 |
基金
|
supported by the National Natural Science Foundation for Outstanding Young Scholars of China
;
国家自然科学基金
;
the Fok Ying Tong Education Foundation
;
the Basic Scientific Research Operation of Center Universities
;
国家973计划
|
文献收藏号
|
CSCD:4902923
|
参考文献 共
20
共1页
|
1.
Zhao H. Kinetics of recrystallization for twin-roll casting AZ31 magnesium alloy during homogenization.
Int. J. Miner. Metall. Mater,2011,18:570
|
CSCD被引
4
次
|
|
|
|
2.
Chen Z Z. Preparation of semi-solid aluminum alloy slurry poured through a water-cooled serpentine channel.
Int. J. Miner. Metall. Mater,2012,19:48
|
CSCD被引
7
次
|
|
|
|
3.
Ji S. Semi-solid processing of engineering alloys by a twin-screw rheomoulding process.
Mater. Sci. Eng. A,2001,299:210
|
CSCD被引
66
次
|
|
|
|
4.
Kang C G. Development of a new rheology forming process with a vertical-type sleeve with electromagnetic stirring.
Int. J. Adv. Manuf. Technol,2008,39:462
|
CSCD被引
2
次
|
|
|
|
5.
Kang Y L. Microstructure study on semi-solid 60Si2Mn during compressing.
J. Univ. Sci. Technol. Beijing,2001,8:115
|
CSCD被引
6
次
|
|
|
|
6.
Midson S P. Rheocasting processes for semi-solid casting of aluminum alloys.
Die Cast. Eng,2006,50:48
|
CSCD被引
1
次
|
|
|
|
7.
Haga T. Twin roll casting of aluminum alloy strips.
J. Mater. Process. Technol,2004,153/154:42
|
CSCD被引
42
次
|
|
|
|
8.
Czerwinski F. Near-liquidus molding of Mg-Al and Mg-Al-Zn alloys.
Acta. Mater,2005,53:1973
|
CSCD被引
13
次
|
|
|
|
9.
Haghayeghi R. An investigation on DC casting of a wrought aluminium alloy at below liquidus temperature by using melt conditioner.
J. Alloys Compd,2010,502:382
|
CSCD被引
8
次
|
|
|
|
10.
Haghayeghi R. Melt conditioned direct chill casting (MC-DC) of wrought Al-alloys.
Solid State Phenom,2008,141/143:403
|
CSCD被引
5
次
|
|
|
|
11.
Kaufmann H. An update on the new rheocastingdevelopment work for Al-and Mg-alloys.
Die Cast. Eng,2002,46:16
|
CSCD被引
2
次
|
|
|
|
12.
Motegi T. Continuous casting of semisolid Al-Si-Mg alloy.
Int. J. Mater. Prod. Technol,2001,2(Spec. Iss.):468
|
CSCD被引
5
次
|
|
|
|
13.
Nakamura R. Roll casting of Al-25mass%Si.
Adv. Mater. Res,2010,97/101:1057
|
CSCD被引
1
次
|
|
|
|
14.
Grimmig T. Potential of the rheocasting process, demonstrated on different aluminum based alloy systems.
Solid State Phenom,2006,116/117:484
|
CSCD被引
6
次
|
|
|
|
15.
Babaghorbani P. Kinetics of coarsening and solid sphericity during reheating of ductile iron and Al alloys.
Solid State Phenom,2006,116/117:205
|
CSCD被引
2
次
|
|
|
|
16.
Kapranos P. Thixo-extrusion of 5182 aluminum alloy.
Solid State Phenom,2008,141/143:115
|
CSCD被引
5
次
|
|
|
|
17.
Cai W H. Study in process parameter of preparing rheocasting slurry by the method of cooling slope tube.
J. Nanchang Univ. Eng. Technol,2003,25:13
|
CSCD被引
3
次
|
|
|
|
18.
Guan R G. Semisolid die forging process, microstructures and properties of AZ31 magnesium alloy mobile telephone shells.
Int. J. Miner. Metall. Mater,2011,18:665
|
CSCD被引
1
次
|
|
|
|
19.
Ruan Y M. A deforming finite element method for analysis of alloy solidification problems.
Finite Elem. Anal. Des,1993,13:49
|
CSCD被引
1
次
|
|
|
|
20.
Guan R G. Microstructure evolution and properties of Mg-3Sn-1Mn (wt%) alloy strip processed by semisolid rheorolling.
J. Mater. Process. Technol,2012,212:1430
|
CSCD被引
13
次
|
|
|
|
|