基于SBAS-InSAR的矿区采空区潜在滑坡综合识别方法
A Method based on SBAS-InSAR for Comprehensive Identification of Potential Goaf Landslide
查看参考文献32篇
文摘
|
针对位于山区且受大量采空区影响的边坡,利用传统测量方法监测耗费人力、物力且光学遥感难以定量识别其是否为潜在滑坡的问题,本文提出一种融合研究区小基线集(SBAS-InSAR)地表监测数据、坡度及坡向的识别方法.通过SBAS-InSAR技术获得研究区地表雷达视线(LOS)方向形变速率,将其转化为垂直方向形变速率,并根据研究区DEM建立坡度及坡向分析图,根据不同山体的坡度、坡向找到易发生滑坡的区域,融入该区域垂直方向的时序形变速率,对其进行滑坡识别.实验表明:卡房镇周边受采空区的影响较大,多数区域垂直方向年形变速率大于10 mm/a;通过本文方法对研究区潜在滑坡进行识别,发现在研究区的21处历史滑坡点中,有16处被识别为潜在滑坡,5处未被识别但也位于发生形变的区域内,表明本文方法对潜在滑坡的识别精度高,具有可行性.该研究为识别采空附近的潜在滑坡提供了一种新的思路,可以有效识别采空区附近山体边坡是否处于潜在的、不明显的滑动状态,对滑坡灾害具有预警作用. |
其他语种文摘
|
Traditional methods for monitoring goaf landslides cost manpower and material resources, while optical remote sensing is difficult for quantitatively identifying potential landslides. This paper used InSAR to monitor the slopes of a mountane area in Kafang Town of Yunnan Province that is affected by goafs. To date, there have been some methods for identifying the occurrence of (potential) landslides, but most of them are based on the line-of-sight (LOS) direction deformation or slope direction that is converted from the LOS direction. Yet, when landslide is monitored based on the LOS direction, the actual deformation trend of the landslide cannot be captured. The deformation based on the slope direction is limited by the different slopes of mountains during the conversion process, and cannot reflect the specific landslide deformation. In this context, this paper proposed a new method that integrated the ground monitoring data of SBAS-InSAR, slope, and aspect.?The deformation rate of LOS was obtained by SBAS-InSAR, and then it was converted into the vertical deformation rate. Based on the SRTM DEM data of 30 m resolution in the study area, the GIS analysis tool was used to generate the slope and aspect maps. Combined with the satellite parameters of Sentinel-1A, the radar visibility of the study area was partitioned to obtain effective observation values. The slope and aspect were re-extracted to detect areas where landslide is likely to occur, and then they were integrated into the vertical deformation rate to identify potential landslides. The identified potential landslide areas were compared with historical records to evaluate the accuracy of our method. The result showed that the surrounding areas of Kafang town were notably affected by goafs, and that the vertical deformation rate of most areas was more than 10 mm/a. With the proposed method, we found that 16 of the 21 historical landslide points in the study area were identified as potential landslides while 5 were not identified (but also located in the deformation region). We conclude that our proposed method for identifying potential landslides was highly accurate and feasible. This study provides a way to detect potential landslides near the goafs, by determining whether mountain slopes are in a potential and inconspicuous sliding state or not, and accordingly, helps provide early warnings of landslide disasters. |
来源
|
地球信息科学学报
,2019,21(7):1109-1120 【核心库】
|
DOI
|
10.12082/dqxxkx.2019.180630
|
关键词
|
SBAS-InSAR
;
采空区
;
潜在滑坡
;
坡度
;
坡向
;
识别方法
;
云南省个旧市卡房镇
|
地址
|
1.
昆明理工大学国土资源工程学院, 昆明, 650093
2.
云南省高校高原山区空间信息测绘技术应用工程研究中心, 云南省高校高原山区空间信息测绘技术应用工程研究中心, 昆明, 650093
3.
中国有色金属工业协会智慧矿山地理空间信息集成创新重点实验室, 昆明, 650093
4.
昆明理工大学公共安全与应急管理学院, 昆明, 650093
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1560-8999 |
学科
|
地质学;矿业工程 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:6538862
|
参考文献 共
32
共2页
|
1.
陈玺.
SBAS-InSAR技术在秦州区地表形变监测与滑坡敏感性评价中的应用研究,2018
|
CSCD被引
6
次
|
|
|
|
2.
康亚. InSAR滑坡探测技术研究---以金沙江乌东德水电站段为例.
大地测量与地球动力学,2018,38(10):1053-1057
|
CSCD被引
8
次
|
|
|
|
3.
康亚.
InSAR技术在西南山区滑坡探测与监测的应用,2016
|
CSCD被引
16
次
|
|
|
|
4.
王桂杰. D-INSAR技术在大范围滑坡监测中的应用.
岩土力学,2010,31(4):1337-1344
|
CSCD被引
30
次
|
|
|
|
5.
Colesanti C. Monitoring landslides and tectonic motions with the Permanent Scatterers technique.
Engineering Geology,2003,68(s1/2):3-14
|
CSCD被引
57
次
|
|
|
|
6.
涂鹏飞. 应用重轨星载InSAR技术监测三峡库区滑坡形变探讨.
遥感技术与应用,2010,25(6):886-890
|
CSCD被引
2
次
|
|
|
|
7.
Berger M. ESA's sentinel missions in support of Earth system science.
Remote Sensing Environment,2012,120:84-90
|
CSCD被引
7
次
|
|
|
|
8.
Berardino P. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms.
IEEE Transactions on Geoscience and Remote Sensing,2002,40(11):2375-2383
|
CSCD被引
659
次
|
|
|
|
9.
Wasowski. Investigating landslides and unstable slopes with satellite multi temporal interferometry: Current issues and future perspectives.
Engineering Geology,2014,174:103-138
|
CSCD被引
42
次
|
|
|
|
10.
廖明生. 高分辨率SAR数据在三峡库区滑坡监测中的应用.
中国科学:地球科学,2012,42(2):217-229
|
CSCD被引
31
次
|
|
|
|
11.
Cascini L. Advanced low-and full-resolution D-InSAR map generate-on for slow-moving landslide analysis at different scales.
Engineering Geology,2010,112(1/4):29-42
|
CSCD被引
23
次
|
|
|
|
12.
Dong J. Mapping landslide surface displacements with time series SAR interferometry by combining persistent and distributed scatterers: A case study of Jiaju landslide in Danba, China.
Remote Sensing of Environment,2018,205:180-198
|
CSCD被引
37
次
|
|
|
|
13.
刘筱怡. 基于SBAS-InSAR的鲜水河断裂带蠕滑型滑坡特征研究.
现代地质,2017,31(5):445-977
|
CSCD被引
1
次
|
|
|
|
14.
徐建军. 煤矿老采空区滑坡勘查与机理分析---以山西清徐李家楼滑坡为例.
中国地质灾害与防治学报,2015,26(4):25-29
|
CSCD被引
2
次
|
|
|
|
15.
樊晓一. 汶川地震滑坡发育特征及其影响因素.
自然灾害学报,2012,21(1):128-134
|
CSCD被引
14
次
|
|
|
|
16.
曹洪洋. 区域滑坡灾害地形地貌因子敏感性分析研究.
中国安全科学学报,2011,21(11):3-7
|
CSCD被引
6
次
|
|
|
|
17.
苏巧梅. 霍西煤矿区地表滑坡灾害敏感性数值建模与等级划分.
地球信息科学学报,2017,19(12):1613-1622
|
CSCD被引
5
次
|
|
|
|
18.
聂兵其.
基于InSAR的滑坡形变探测及隐患识别研究-以丹巴县城区为例,2018
|
CSCD被引
3
次
|
|
|
|
19.
熊海仙. 数字地形分析在滑坡研究中的应用综述.
热带地理,2015,35(1):139-146
|
CSCD被引
5
次
|
|
|
|
20.
杨城. 基于DEM的福建省土质滑坡敏感性评价.
地球信息科学学报,2016,18(12):1624-1633
|
CSCD被引
10
次
|
|
|
|
|