一种多策略协同的多目标萤火虫算法
Multi-Objective Firefly Algorithm Based on Multiply Cooperative Strategies
查看参考文献20篇
文摘
|
现实中的多目标优化问题不断增多且日益复杂,需要不断发展新型启发式算法应对挑战.提出一种多策略协同的多目标萤火虫算法MOFA-MCS.该算法采用均匀化与随机化相结合的方法产生初始种群;利用档案集中的精英解个体指导萤火虫移动;并在移动的过程施加Levy flights随机扰动;最后,利用ε-三点最短路径策略维护档案解群的多样性.MOFA-MCS算法与其他6种经典的多目标进化算法一同在12个基准的多目标测试问题上进行实验,结果表明所提算法在收敛性、多样性方面总体上具有显著的性能优势. |
其他语种文摘
|
More and more complex multi-objective optimization problems have emerged in the real world,and the novel heuristic algorithms need to be developed to meet the challenge.A multi-objective firefly algorithm based on multiply cooperative strategies(MOFA-MCS)is proposed in the paper.MOFA-MCS uses the method of homogenization and randomization to generate the initial population,adopts the elite solutions in the external archive to lead the firefly to move,exerts Levy flights to add random disturbance in the moving process,and finally,the ε-three-point shortest path strategy is also applied to maintain the diversity of the archive solutions.MOFA-MCS is compared with other six representative multi-objective evolutionary algorithms on 12 benchmark multi-objective test problems,and the experimental results show that MOFA-MCS has significant performance advantages in terms of convergence and diversity. |
来源
|
电子学报
,2019,47(11):2359-2367 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2019.11.018
|
关键词
|
多目标优化问题
;
萤火虫算法
;
多目标萤火虫算法
;
多策略协同
|
地址
|
1.
南宁师范大学计算机与信息工程学院, 广西, 南宁, 530299
2.
华东交通大学软件学院, 江西, 南昌, 330013
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
自动化技术、计算机技术 |
基金
|
国家自然科学基金
;
广西八桂学者项目
;
广西创新驱动重大专项
;
广西科技基地和人才专项
;
广西自然科学基金
;
广西研究生教育创新计划资助
|
文献收藏号
|
CSCD:6668696
|
参考文献 共
20
共1页
|
1.
Srinivas N. Multi-objective optimization using non-dominated sorting in genetic algorithms.
Evolutionary Computation,1994,2(3):221-248
|
CSCD被引
536
次
|
|
|
|
2.
Deb K. A fast and elitist multi-objective genetic algorithm: NSGA-II.
IEEE Transactions on Evolutionary Computation,2002,6(2):182-197
|
CSCD被引
3311
次
|
|
|
|
3.
Zitzler E. Multi-objective evolutionary algorithms: A comparative case study and the strength Pareto approach.
IEEE Transactions on Evolutionary Computation,1999,3(4):257-271
|
CSCD被引
524
次
|
|
|
|
4.
Zitzler E. SPEA2: Improving the strength pareto evolutionary algorithm.
Evolutionary Methods for Design,Optimization and Control with Applications to Industrial Problems,2002:95-100
|
CSCD被引
14
次
|
|
|
|
5.
Zhang Q. MOEA/D: A multiobjective evolutionary algorithm based on decomposition.
IEEE Transactions on Evolutionary Computation,2007,11(6):712-731
|
CSCD被引
537
次
|
|
|
|
6.
Wang L P. Constrained subproblems in a decomposition-based multi-objective evolutionary algorithm.
IEEE Transactions on Evolutionary Computation,2016,20(3):475-480
|
CSCD被引
14
次
|
|
|
|
7.
Nebro A J. AbYSS: Adapting scatter search to multi-objective optimization.
IEEE Transactions on Evolutionary Computation,2008,12(4):439-457
|
CSCD被引
19
次
|
|
|
|
8.
谢承旺. 应用精英反向学习的多目标烟花爆炸算法.
电子学报,2016,44(5):1180-1188
|
CSCD被引
12
次
|
|
|
|
9.
谢承旺. 一种增强型多目标烟花爆炸优化算法.
电子学报,2017,45(10):2323-2331
|
CSCD被引
3
次
|
|
|
|
10.
Yang X S.
Nature-Inspired Metaheuristic Algorithms,2008
|
CSCD被引
67
次
|
|
|
|
11.
Yang X S. Multiobjective firefly algorithm for continuous optimization.
Engineering with Computers,2013,29(2):175-184
|
CSCD被引
35
次
|
|
|
|
12.
Tsai C W. A non-dominated sorting firefly algorithm for multi-objective optimization.
International Conference on Intelligent Systems Design and Applications,2015:62-67
|
CSCD被引
1
次
|
|
|
|
13.
谢承旺. HMOFA:一种混合型多目标萤火虫算法.
软件学报,2018,29(4):1143-1162
|
CSCD被引
7
次
|
|
|
|
14.
谢承旺. 一种多策略融合的多目标粒子群优化算法.
电子学报,2015,43(8):1538-1544
|
CSCD被引
15
次
|
|
|
|
15.
Yang X S. Eagle strategy using levy walk and firefly algorithms for stochastic optimization.
Studies in Computational Intelligence,2010,284:101-111
|
CSCD被引
11
次
|
|
|
|
16.
Laumanns M. Combining convergence and diversity in evolutionary multi-objective optimization.
Evolutionary Computation,2002,10(3):263-282
|
CSCD被引
84
次
|
|
|
|
17.
谢承旺. 应用档案精英学习和反向学习的多目标进化算法.
计算机学报,2017,40(3):757-772
|
CSCD被引
13
次
|
|
|
|
18.
Zitzler E. Comparision of multiobjective evolutionary algorithms: Empirical results.
Evolutionary Computation,2000,8(2):173-195
|
CSCD被引
424
次
|
|
|
|
19.
Deb K. Scalable multi-objective optimization test problems.
Proceedings of the IEEE Congress on Evolutionary Computation (CEC),2002:825-830
|
CSCD被引
2
次
|
|
|
|
20.
Bosman P A N. The balance between proximity and diversity in multiobjective evolutionary algorithms.
IEEE Transactions on Evolutionary Computation,2003,16(1):51-69
|
CSCD被引
1
次
|
|
|
|
|