克服“高超声障”的途径
AN APPROACH FOR SURMOUNTING "HYPERSONIC BARRIER"
查看参考文献18篇
文摘
|
在高超声速飞行条件下,流入冲压发动机燃烧室并降至低速的空气温度,随着飞行马赫数增加升得愈来愈高。燃料与高温空气混合燃烧释放的化学能将部分转化为解离能。这些解离能在长度受限的尾喷管中难以充分复合形成推力,使冲压发动机性能随飞行马赫数增大而急剧下降。导致冲压发动机不适应高超声速飞行器的推进要求。将此定名为“高超声障”。半个世纪以来,广泛采用“超声速燃烧”降低流入燃烧室的空气温度来克服这种障碍。虽已取得不少进展,然而关键性难点仍需继续攻克。为了多途径促进吸气推进高超声速飞行的实现,提出克服“高超声障”的另一种思路:保持现有冲压发动机吸气与燃烧方式,通过催化促进燃气解离组分在尾喷管膨胀过程中的复合,增大冲压发动机的推力,达到满足高超声速飞行器的推进要求。 |
其他语种文摘
|
Under the condition of hypersonic flight, the temperature of the air flow entering the combustion chamber of ramjet is very high. A large fraction of the available reactive heat of air and fuel of such high temperature will be transferred to dissociation energy of the products. When the burnt gases run over the exhaust nozzle with limited length, the dissociation energy can not be released fully. As a result, the thrust of ramjet drops and can not meet the needs of propulsion requirement for hypersonic flight. This effect is termed "hypersonic barrier". For surmounting the"hypersonic barrier", some tentative ideas are proposed. Under the condition of preserving the breathing and burning modes of existent ramjet, the catalysis is utilized to promote the recombination of dissociation compositions during expansion in nozzle. Thus the thrust of the ramjet may be increased to the extent that the requirements of hypersonic propulsion can be met. |
来源
|
力学进展
,2007,37(3):472-476 【核心库】
|
关键词
|
吸气推进
;
高超声速流
;
解离
;
复合
;
催化
|
地址
|
中国科学院力学研究所, 高温气体动力学实验室, 北京, 100080
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0992 |
学科
|
航天(宇宙航行) |
基金
|
中国科学院交叉学科特别支持项目
;
国家自然科学基金资助项目(90605006,10621202)
|
文献收藏号
|
CSCD:2913496
|
参考文献 共
18
共1页
|
1.
钱学森. 论技术科学.
科学通报,1957:97-104
|
CSCD被引
37
次
|
|
|
|
2.
童秉纲.
气体动力学,1990
|
CSCD被引
51
次
|
|
|
|
3.
吴伯泽(译).
爆炸法热力学研究和燃烧过程的计算,1959
|
CSCD被引
1
次
|
|
|
|
4.
Ferri A. Mixing controlled supersonic combustion.
Ann Rev Fluid Mech,1973,5:301-38
|
CSCD被引
12
次
|
|
|
|
5.
Foa J V. On the heat addition to a gas flowing in a pipe at subsonic speed.
JAS,1949,16(2):84-94
|
CSCD被引
1
次
|
|
|
|
6.
Foa J V. On the heat addition to a gas flowing in a pipe at supersonic speed.
USONR Rep No Hf-534-A-2,1949
|
CSCD被引
1
次
|
|
|
|
7.
Stocker P M. The transients arising from the addition of heat to a gas flow.
Proc Cambridge Philos Soc,1952,48:482-498
|
CSCD被引
1
次
|
|
|
|
8.
Zierep J.
Theory of flow in compressible media with heat addition AGARDograph No 1974:191
|
CSCD被引
1
次
|
|
|
|
9.
Billig F S. Combustion processes in supersonic flow.
J Propulsion Power,1988,4(3):209-216
|
CSCD被引
6
次
|
|
|
|
10.
Curran E T. Fluid phenomena in scramjet combustion system.
Ann Rev Fluid Mech,1996,28:323-360
|
CSCD被引
22
次
|
|
|
|
11.
陈立子(译).
可压缩流的气体动力学与热力学,1966
|
CSCD被引
1
次
|
|
|
|
12.
Emmons H W.
Fundamentals of gas dynamics,1958
|
CSCD被引
3
次
|
|
|
|
13.
Lezberg E A. Effects of recombination on hypersonic ramjet performance:I Experimental measurements.
AIAA J,1963,1(1):2071-2076
|
CSCD被引
1
次
|
|
|
|
14.
Lezberg E A. Effects of recombination on hypersonic ramjet performance:Ⅱ Analytical investigation.
AIAA J,1963,1(1):2077-2083
|
CSCD被引
1
次
|
|
|
|
15.
Rao GVRB. Exhaust nozzle contour for optimum thrust.
Jet Propulsion,1958,28:377-382
|
CSCD被引
1
次
|
|
|
|
16.
Bray KNC. Atomic recombination in a hypersonic windtunnel nozzle.
JFM,1959,6(1):1-32
|
CSCD被引
1
次
|
|
|
|
17.
Hoffman J D. A general methods for determining optimum nozzle contours for chemically reacting flows.
AIAA J,1967,5(4):670-676
|
CSCD被引
1
次
|
|
|
|
18.
Chen J C. Experimental investigation of atomic recombination in a supersonic nozzle.
JFM,1979,17:450-458
|
CSCD被引
1
次
|
|
|
|
|