珠江下游不同水体中金属元素在颗粒相和胶体相中的分布和分配
Distribution and Partitioning of Heavy Metals in Particulate and Colloid Phases in Different Kinds of Water in the Downstream Pearl River
查看参考文献19篇
文摘
|
为了研究不同水体中重金属在颗粒相和胶体相中的分布特征,运用连续流离心机、切面流超滤分离技术(UF)和反渗透技术(RO),从流花湖公园的湖泊和珠江下游的水库、河流、河口共4种水体中分离了大量的颗粒物、胶体,然后用电感耦合等离子体/质谱(ICP-MS)对其中的重金属进行了定量分析。对比不同水体中颗粒态重金属的浓度(ng?L~(-1))的季节变化,发现春季受降水影响,重金属的浓度最高。通过比较颗粒物、UF-胶体和RO-胶体中重金属的浓度,可以得到重金属在颗粒物、不同粒径的胶体中的分布情况。结果显示富营养化程度高的湖泊水体(LHH)中,大多数重金属主要分布在颗粒相中。河口中Cr、Mn、Zn、Pb、Co、Ag、Cd这些主要由人类活动产生的重金属,受河口絮凝沉降作用的影响,主要存在于大分子颗粒相中。不同水体中重金属在两相中和在胶体中的分配情况各不相同,说明重金属在两相中的分配与颗粒物、胶体及重金属的性质有关。 |
其他语种文摘
|
Continuous flow centrifugation, tangential flow ultrafiltration, and reverse osmosis were used to isolate suspended particulate matter (>0.45 μm) and colloidal matter in the reservoir, river, and estuary of the Pearl River. The distribution and seasonal variation of heavy metals were also determined by inductively coupled plasma/mass spectrometry (ICP-MS). It was found that the concentrations (ng?L~(-1)) were the highest in spring due to the impact of precipitation. The distribution (partitioning) of metals between large colloidal or particulate phase and small colloidal phase were estimated. The results showed that most metals exit in particulate phases in the eutrophicated Liuhua lake (LHH). In this lake, metals were largely absorbed by thriving algae. In estuary water, Cr, Mn, Zn, Pb, Co, Ag, Cd generated by human activity, mainly exist in the large colloidal and particulate phases, which is also attributed to flocculation and sedimentation. The partitioning of metals is different in the investigated water, suggesting that the partitioning of metals is related to the properties of metals, particulate phase, and colloidal phase. |
来源
|
生态环境学报
,2015,24(12):2017-2021 【核心库】
|
DOI
|
10.16258/j.cnki.1674-5906.2015.12.014
|
关键词
|
胶体
;
颗粒物
;
重金属元素
;
分配
|
地址
|
中国科学院广州地球化学研究所, 有机地球化学国家重点实验室, 广东, 广州, 510640
|
语种
|
中文 |
ISSN
|
1674-5906 |
学科
|
环境科学基础理论 |
基金
|
国家自然科学基金-广东联合基金
|
文献收藏号
|
CSCD:5614543
|
参考文献 共
19
共1页
|
1.
Brad H B. Adsorption of heavy metal ions on soils and soils constituents.
Journal of Colloid and Interface Science,2004,277(1):1-18
|
被引
1
次
|
|
|
|
2.
Cidu R. Transport of trace elements under different seasonal conditions:Effects on the quality of river water in a Mediterranean area.
Applied Geochemistry,2007,22(12):2777-2794
|
被引
4
次
|
|
|
|
3.
Dai M H. The significance role of colloids in the transport and transformation of organic carbon and associated trace metals (Cd, Cu and Ni) in the Rhone delta (France).
Marine Chemistry,1995,51(2):159-175
|
被引
23
次
|
|
|
|
4.
Guo L. Ultrafiltration and its applications to sampling and characterisation of aquatic colloids.
Environmental Colloids and Particles:Behaviour, Separation and Characterisation,2007,10:159
|
被引
1
次
|
|
|
|
5.
Huang W. Heavy metals in particulate and colloidal matter from atmospheric deposition of urban Guangzhou, South China.
Marine Pollution Bulletin,2014,85(2):720-726
|
被引
5
次
|
|
|
|
6.
Liu A. Adsorption/desorption in a system consisting of humic acid, heavy metals, and clay minerals.
Journal of Colloid and Interface Science,1999,218(1):225-232
|
被引
19
次
|
|
|
|
7.
Maguire S. Caesium sorption-desorption in clay-humic acid systems.
Journal of Soil Science,1992,43(4):689-696
|
被引
2
次
|
|
|
|
8.
Muller B. Similar adsorption parameters for trace metals with different aquatic particles.
Aquatic Geochemistry,2001,7(2):107-126
|
被引
2
次
|
|
|
|
9.
Muller F L L. Interactions of copper,lead and cadmium with the dissolved,colloidal and particulate components of estuarine and coastal waters.
Marine Chemistry,1996,52(3/4):245-268
|
被引
6
次
|
|
|
|
10.
Ran Y. Fractionation and composition of colloidal and suspended particulate materials in rivers.
Chemosphere,2000,41(1):33-43
|
被引
10
次
|
|
|
|
11.
Rybicka E H. Heavy metals sorption/desorption on competing clay minerals; an experimental study.
Applied Clay Science,1995,9(5):369-381
|
被引
2
次
|
|
|
|
12.
Wells M L. An improved method for rapid preconcentration and determination of bioactive trace metals in seawater using solid phase extraction and high resolution inductively coupled plasma mass spectrometry.
Marine Chemistry,1998,63(1):145-153
|
被引
2
次
|
|
|
|
13.
Wen L S. Physicochemical speciation of bioactive trace metal (Cd, Cu, Fe, Ni) in the oligotrophic South China Sea.
Marine Chemistry,2006,101(1/2):104-129
|
被引
6
次
|
|
|
|
14.
Zhang Y. Compositions and constituents of freshwater dissolved organic matter isolated by reverse osmosis.
Marine pollution bulletin,2014,85(1):60-66
|
被引
1
次
|
|
|
|
15.
胡克林. 北京市大兴区土壤重金属含量的空间分布特征.
环境科学学报,2004,24(3):463-468
|
被引
130
次
|
|
|
|
16.
黄文. 东江流域水环境中颗粒态和胶体态金属元素的分布和来源.
环境科学学报,2015,35(1):101-107
|
被引
4
次
|
|
|
|
17.
李敏. 磷酸根和镉离子在羟基铁改性膨润土表面的协同吸附机制研究.
环境科学学报,2013,33(12):3205-3210
|
被引
7
次
|
|
|
|
18.
张传永. 重金属对水生生物毒性作用研究进展.
生命科学仪器,2008(11):3-7
|
被引
13
次
|
|
|
|
19.
张战平. 风浪扰动对太湖水体中胶体态痕量金属含量的影响.
中国环境科学,2006,26(6):662-666
|
被引
8
次
|
|
|
|
|