航空发动机叶片材料及抗疲劳磨削技术现状
Research progress of aero-engine blade materials and anti-fatigue grinding technology
查看参考文献104篇
文摘
|
随着先进航空发动机向大推重比、轻量化的方向发展,镍基高温合金、钛合金以及陶瓷基复合材料等一系列轻质航空材料不断涌现并被应用,成为航空发动机叶片等关键构件的主要生产材料。然而由于硬质合金的应力集中敏感特性以及复合材料的各向异性和脆断机制,其面临的疲劳失效问题也逐渐凸显。现有研究表明,航空发动机叶片抗疲劳性能与其加工过程有重要关系,进而影响装备的服役性能和服役寿命。磨削作为航空发动机叶片的最终材料去除工艺,在获得精确廓形的同时直接决定了叶片最终的表面完整性状态和抗疲劳性能。为了解新型轻质航空材料特性及其磨削表面抗疲劳性能,进而为面向抗疲劳性能优化的航发叶片加工提供指导,本文对航空发动机叶片的典型材料及抗疲劳磨削技术研究现状进行了归纳总结。首先,简述了典型轻质、高强航空材料特性及其在航发叶片生产中的应用现状;然后,分析了航空发动机叶片的高表面完整性磨削方法及其抗疲劳加工关键技术;最后对航空发动机叶片的抗疲劳磨削研究进行了未来展望。 |
其他语种文摘
|
With the development of advanced aviation engines in the direction of high thrust-to-weight ratio and lightweight, a series of lightweight aviation materials such as titanium alloys, nickel-based high-temperature alloys, and ceramic-based composite materials have emerged and been widely used for the key components in the aerospace field, and have also become the main production materials for aero-engine blades. However, due to the stress concentration sensitivity of carbide and the anisotropy and brittle mechanism of composite materials, the fatigue failure problem is gradually highlighted. Existing studies show that the fatigue resistance performance of aero-engine blades has important relationship with its processing process, which in turn affects the service performance and service life of the equipment. Grinding, as the final material removal process for aero-engine blades, directly determines the final surface integrity and fatigue resistance of the blades while obtaining precise profiles. In order to understand the characteristics of blades processed by new lightweight aviation materials, and provide guidance for the processing of aero-engine blades for optimization of fatigue performance, the application of typical aero-engine blade materials and the research status of antifatigue grinding technology are summarized. Firstly, the characteristics of typical lightweight and high-strength aeronautical materials and their application in the production of aero-engine blades are briefly described. Secondly, the method of high surface integrity grinding and the key technology of anti-fatigue processing of aero-engine blades are analyzed. Finally, the research on antifatigue grinding of aero-engine blades is prospected. |
来源
|
航空材料学报
,2021,41(4):17-35 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2021.000058
|
关键词
|
航空金属材料
;
抗疲劳制造
;
复合材料
;
航空发动机叶片
;
表面完整性
;
磨削加工
|
地址
|
1.
重庆大学机械与运载工程学院, 重庆, 400044
2.
重庆大学, 机械传动国家重点实验室, 重庆, 400044
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
航空 |
基金
|
国家自然科学基金联合基金项目
;
国家重大科技专项
|
文献收藏号
|
CSCD:7041415
|
参考文献 共
104
共6页
|
1.
肖贵坚. 面向型面精度一致性的整体叶盘砂带磨削新方法及实验研究.
航空学报,2016,37(5):1666-1676
|
CSCD被引
15
次
|
|
|
|
2.
郭东明. 高性能精密制造方法及其研究进展.
机械工程学报,2014,50(11):119-134
|
CSCD被引
43
次
|
|
|
|
3.
Bhagi L K. Fractographic investigations of the failure of L-1 low pressure steam turbine blade.
Case Studies in Engineering Failure Analysis,2013,1(2):72-78
|
CSCD被引
4
次
|
|
|
|
4.
杨硕.
涡扇发动机高压压气机叶片裂纹萌生及扩展寿命预测研究,2015
|
CSCD被引
4
次
|
|
|
|
5.
吴凯. 航天新型高性能材料的研究进展.
宇航材料工艺,2017,47(6):1-9
|
CSCD被引
4
次
|
|
|
|
6.
李中权. 航天先进轻合金材料及成形技术研究综述.
上海航天,2019,36(2):9-21
|
CSCD被引
15
次
|
|
|
|
7.
李郁. 航空典型难加工材料切削加工技术研究进展.
装备制造技术,2018(4):12-17
|
CSCD被引
2
次
|
|
|
|
8.
刘巧沐. 碳化硅陶瓷基复合材料在航空发动机上的应用需求及挑战.
材料工程,2019,47(2):1-10
|
CSCD被引
53
次
|
|
|
|
9.
黄云. 航空发动机叶片机器人精密砂带磨削研究现状及发展趋势.
航空学报,2019,40(3):48-67
|
CSCD被引
4
次
|
|
|
|
10.
黄云. 整体叶盘抛光技术的研究现状及发展趋势.
航空学报,2016,37(7):2045-2064
|
CSCD被引
19
次
|
|
|
|
11.
蔡建明. 航空发动机用先进高温钛合金材料技术研究与发展.
材料工程,2016,44(8):1-10
|
CSCD被引
56
次
|
|
|
|
12.
Campanile G. FSW of AA2139-T8 butt joints for aeronautical applications.
Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials Design and Applications,2011,225(2):87-101
|
CSCD被引
1
次
|
|
|
|
13.
Oosthuizen G A.
Innovative cutting materials for finish shoulder milling Ti-6A1-4V aero-engine alloys,2009
|
CSCD被引
1
次
|
|
|
|
14.
Li H Y. Effect of different processing technologies and heat treatments on the microstructure and creep behavior of GH4169 superalloy.
Materials Science and Engineering: A,2013,582(10):368-373
|
CSCD被引
9
次
|
|
|
|
15.
Wang X G. Tensile behaviors and deformation mechanisms of a nickel-base single crystal superalloy at different temperatures.
Materials Science and Engineering: A,2014,598(26):154-161
|
CSCD被引
12
次
|
|
|
|
16.
Lutjering G.
Titanium,2003
|
CSCD被引
20
次
|
|
|
|
17.
Chandrashekar S. Technology & innovation in China-a case study of single crystal superalloy development for aircraft turbine blades.
International Journal of Clinical & Experimental Pathology,2011,4(2):197-199
|
CSCD被引
1
次
|
|
|
|
18.
师昌绪. 我国高温合金的发展与创新.
金属学报,2010,46(11):1281-1288
|
CSCD被引
78
次
|
|
|
|
19.
Bai X F. Characterization of hot deformation behavior of a biomedical titanium alloy TLM.
Materials Science & Engineering, A. Structural Materials: Properties, Misrostructure and Processing,2014,598:236-243
|
CSCD被引
7
次
|
|
|
|
20.
Fan J K. Characterization of hot deformation behavior of a new near beta titanium alloy: Ti-7333.
Materials & Design,2013,49(8):945-952
|
CSCD被引
39
次
|
|
|
|
|