帮助 关于我们

返回检索结果

基于随机森林的黄土地貌分类研究
Loess Landform Classification based on Random Forest

查看参考文献56篇

曹泽涛 1,2,3   方子东 1,2,3   姚瑾 4   熊礼阳 1,2,3 *  
文摘 地貌分类在指导人类建设活动的规模与布局中有着重要的意义。然而,传统的基于数字高程模型(DEM)的地貌分类方法使用的地形因子和考虑到的地貌特征往往比较单一。本文提出了一种基于流域单元的地貌分类方法,该方法考虑了流域单元的多方面特征,包括基本地形因子统计量、地形特征点线统计量、小流域特征和纹理特征。本研究首先基于DEM进行水文分析将研究区域划分成不同的小流域。然后利用数字地形分析提取29个不同方面的特征来表征流域的形态,并基于随机森林(RF)算法进行了特征选择和参数标定。RF是一种基于决策树算法的集成分类器,能有效地处理高维数据,分类精度高。最后选择训练集小流域对RF分类器进行训练,使用训练完成的分类器对整个研究区域的地貌进行分类,研究地貌分异的规律。该实验在我国陕北黄土高原典型黄土地貌区域的地貌分类中取得了较好的结果,结果表明不同的地貌之间存在明显的区域界线,特定的地貌类型在空间上表现出明显的聚集性。通过人工判读进行验证的分类精度达到了85%,Kappa系数为0.83。
其他语种文摘 Landform classification is one of the most important steps tor eveal the mechanisms of surface matter flows and energy conversion, which could inform the scale and layout of human construction activities. However, traditional landform classification methods based on Digital Elevation Model (DEM) often use a small number of topographical derivatives or landform characteristics, resulting in insufficiently precise classification results. However, object-oriented landform classification performs better in that reliable classification can be achieved by maximizing the homogeneity within and between objects. But how to set conditions in object segmentation remains a challenge. In this paper, a geomorphological classification method based on watershed unitwas proposed, by accounting for many characteristics of watershed unit including statistics of basic topographic factors, feature point and feature line, basin and texture characteristics. Firstly, hydrological analysis based on DEM divided the study area into different small basins as the experimental units. Then, 29 features were extracted within each unit to represent watershed morphology using digital terrain analysis; feature selection and parameter calibration were carried out based on Random Forest (RF) algorithm. RF is a supervised integrated learning model aggregating different outputs of a single decision tree to reduce variances that may lead to classification errors in the decision tree. Finally, the watersheds in training set were selected to train the RF classifier, and the trained classifier was used to classify the landform of the whole study area, based on which we studied the landform spatial differentiation pattern. This experiment achieved good results in the landform classification of the Loess Plateau in northern Shaanxi Province. It is one of the areas with the most serious soil erosion and the most fragile eco-environment in the world. Most of them are covered by thick loess, and the topography is fluctuant. Result shows: (1) Compared with manual interpretation, excellent classification results based on small watershed in the study area were obtained, with the classification accuracy reaching 85% and the Kappa coefficient 0.83. (2)All small watersheds were divided into eight types of landforms. The same type of landforms showed obvious spatial aggregation. There were boundaries and transitional zones between different types of landforms. (3) Different geomorphological regions explained different situations of loess deposition and runoff erosion in different regions. Our findings suggest that the combination of RF algorithm and DEM data can achieve better classification results.
来源 地球信息科学学报 ,2020,22(3):452-463 【核心库】
DOI 10.12082/dqxxkx.2020.190247
关键词 地貌 ; 随机森林 ; 黄土高原 ; 地形特征 ; 特征选择 ; 地貌分类 ; DEM ; 小流域
地址

1. 南京师范大学地理科学学院, 南京, 210023  

2. 南京师范大学, 虚拟地理环境教育部重点实验室, 南京, 210023  

3. 江苏省地理信息资源开发与利用协同创新中心, 江苏省地理信息资源开发与利用协同创新中心, 南京, 210023  

4. 自然资源部第一地理信息制图院, 西安, 710054

语种 中文
文献类型 研究性论文
ISSN 1560-8999
学科 测绘学;自然地理学
基金 国家自然科学基金 ;  江苏高校优势学科建设工程
文献收藏号 CSCD:6696139

参考文献 共 56 共3页

1.  李炳元. 中国陆地基本地貌类型及其划分指标探讨. 第四纪研究,2008,28(4):535-543 CSCD被引 102    
2.  张寿根. 现代地貌学,2005 CSCD被引 1    
3.  杨景春. 地貌学原理,2001 CSCD被引 38    
4.  周成虎. 中国陆地1: 100万数字地貌分类体系研究. 地球信息科学学报,2009,11(6):707-724 CSCD被引 126    
5.  裘善文. 试论地貌分类问题. 地理科学,1982,2(4):327-335 CSCD被引 10    
6.  Lee S W. Landscape ecological approach to the relationships of land use patterns in watersheds to water quality characteristics. Landscape and Urban Planning,2009,92(2):80-89 CSCD被引 94    
7.  Wondzell S M. Relationships between landforms, geomorphic processes, and plant communities on a watershed in the northern Chihuahuan Desert. Landscape Ecology,1996,11(6):351-362 CSCD被引 6    
8.  Gordon J E. Geomorphological systems: Developing fundamental principles for sustainable landscape management. Geological landscape conservation,1994:185-189 CSCD被引 1    
9.  O'Neill R V. Monitoring environmental quality at the landscape scale: using landscape indicators to assess biotic diversity, watershed integrity, and landscape stability. BioScience,1997,47(8):513-519 CSCD被引 9    
10.  Mark D M. Computer analysis of topography: A comparison of terrain storage methods. Geografiska Annaler: Series A, Physical Geography,1975,57(3/4):179-188 CSCD被引 1    
11.  Speight J G. Landform pattern description from aerial photographs. Photogrammetria,1977,32(5):161-182 CSCD被引 3    
12.  周廷儒. 中国地形区划草案. 中国自然区划草案. 56,1956:21-56 CSCD被引 1    
13.  Wood J. The geomorphological characterisation of digital elevation models,1996 CSCD被引 15    
14.  Peucker T K. Detection of surface-specific points by local parallel processing of discrete terrain elevation data. Computer graphics and Image processing,1975,4(4):375-387 CSCD被引 31    
15.  O'Callaghan J F. The extraction of drainage networks from digital elevation data. Computer vision, graphics, and image processing,1984,28(3):323-344 CSCD被引 250    
16.  周启鸣. 数字地形分析,2006 CSCD被引 113    
17.  汤国安. 数字高程模型及地学分析的原理与方法,2006 CSCD被引 11    
18.  Gallant J P W J C. Terrain analysis: Principles and applications,2000 CSCD被引 1    
19.  Guth P L. Quantifying and visualizing terrain fabric from digital elevation models. International Conference on GeoComputation, 4th,1999:25-28 CSCD被引 1    
20.  MacMillan R A. A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy sets and Systems,2000,113(1):81-109 CSCD被引 22    
引证文献 13

1 赵鹏军 基于多源地理大数据与机器学习的地铁乘客出行目的识别方法 地球信息科学学报,2020,22(9):1753-1765
CSCD被引 6

2 张艳可 基于CART决策树的双尺度流域单元地貌分类研究———以北回归线(云南段)地区为例 地理与地理信息科学,2021,37(2):84-92
CSCD被引 2

显示所有13篇文献

论文科学数据集

1. “中国数字山地图”数据集(2015)

2. 中巴经济走廊及天山山脉地貌类型250m分辨率数据集(参考时段2000年与2016-2011)

3. 黑河流域1:100万地貌数据集(2000)

数据来源:
国家青藏高原科学数据中心

1. 长武县五期土地利用/覆被数据集(1990-2015)

2. 基于高分辨率影像和地形解译的黄土高原滑坡数据库

3. 黄土高原地区—世界地理数据大百科辞条

数据来源:
国家对地观测科学数据中心
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号