基于自适应多字典学习的单幅图像超分辨率算法
Single Image Super Resolution Based on Adaptive Multi-Dictionary Learning
查看参考文献14篇
文摘
|
自适应字典学习利用图像结构自相似性,将图像自身作为训练样本,通过字典学习使图像中的相似块在字典下具有稀疏表示形式。本文将全局字典学习中利用图像库获取附加信息的思想融入到自适应字典学习的过程中,提出了一种基于自适应多字典学习的单幅图像超分辨率算法,从低分辨率图像自身与图像库同时获取附加信息。该算法对低分辨率图像金字塔结构中的图像块进行聚类,在聚类结果的引导下将图像库中的图像块进行分类,利用各类中的样本分别构建针对各类的多个字典,从而确定表达重建图像块的最优字典。实验表明,与ScSR、SISR、NLIBP、CSSS以及mSSIM等算法相比,本文算法具有更好的超分重建效果。 |
其他语种文摘
|
Adaptive dictionary learning uses the low resolution image itself as training samples to make the similar patches have sparse representation over the learned dictionary ,so that extra information can be exploited from structural self-similarity by dictionary learning .In this paper ,we propose a single image super resolution method based on adaptive multi-dictionary learning .To exploit extra information from both the low resolution image itself ,and the image database ,the proposed method incorporates the idea of global dictionary learning that the image database can be used to obtain extra information into the process of adaptive dictionary learning .In the proposed method ,all patches in the image pyramid of the low resolution image are clustered into several groups ,then each patch satisfying a certain condition in the database is classified into one of these groups with the supervision of the clustering results ,and multi-dictionary learning is used to learn corresponding dictionaries for different groups .Experimental results demonstrate that our method achieves better result compared with ScSR ,SISR ,NLIBP ,CSSS and mSSIM methods . |
来源
|
电子学报
,2015,43(2):209-216 【核心库】
|
DOI
|
10.3969/j.issn.0372-2112.2015.02.001
|
关键词
|
超分辨率
;
稀疏表示
;
自适应字典学习
;
全局字典学习
|
地址
|
1.
清华大学电子工程系, 北京, 100084
2.
北京工业大学计算机学院, 北京, 100124
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0372-2112 |
学科
|
电子技术、通信技术 |
基金
|
北京市教育委员会科技计划重点项目
;
国家自然科学基金
;
国家科技支撑计划项目
|
文献收藏号
|
CSCD:5375568
|
参考文献 共
14
共1页
|
1.
邵文泽. 基于各向异性MRF建模的多帧图像变分超分辨率重建.
电子学报,2009,37(6):1256-1263
|
CSCD被引
9
次
|
|
|
|
2.
宋锐. 一种新的基于MAP的纹理自适应超分辨率图像复原算法.
电子学报,2009,37(5):1124-1129
|
CSCD被引
4
次
|
|
|
|
3.
Yang J. Image super-resolution via sparse representation.
IEEE Transactions on Image Processing,2010,19(11):2861-2873
|
CSCD被引
224
次
|
|
|
|
4.
Protter M. Generalizing the nonlocal-means to super-resolution reconstruction.
IEEE Transactions on Image Processing,2009,18(1):36-51
|
CSCD被引
55
次
|
|
|
|
5.
Dong W. Nonlocal back-projection for adaptive image enlargement.
Proceedings of the 2009 IEEE International Conference on ImageProcessing,2009:349-352
|
CSCD被引
1
次
|
|
|
|
6.
Glasner D. Super-resolution from a single image.
Proceedings of the 12th International Conference on Computer Vision,2009:349-356
|
CSCD被引
7
次
|
|
|
|
7.
Pan Z. Super-resolution based on compressive sensing and structural self-similarity for remote sensing images.
IEEE Transactions on Geoscience and Remote Sensing,2013,51(9):4864-4876
|
CSCD被引
11
次
|
|
|
|
8.
潘宗序. 基于多尺度结构自相似性的单幅图像超分辨率算法.
自动化学报,2014,40(4):594-603
|
CSCD被引
20
次
|
|
|
|
9.
Engan K. Method of optimal directions for frame design.
Proceedings of the 1999 IEEE International Conference on Acoustics,Speech,and Signal Processing,1999:2443-2446
|
CSCD被引
3
次
|
|
|
|
10.
Aharon M. K-SVD:an algorithm for designing overcomplete dictionaries for sparse representation.
IEEE Transactions on Signal Processing,2006,54(11):4311-4322
|
CSCD被引
871
次
|
|
|
|
11.
Elad M. Image denoising via sparse and redundant representations over learned dictionaries.
IEEE Transactions on Image Processing,2006,15(12):3736-3745
|
CSCD被引
407
次
|
|
|
|
12.
Gribonval R. Sparse representations in unions of bases.
IEEE Transactions on Information Theory,2003,49(12):3320-3325
|
CSCD被引
39
次
|
|
|
|
13.
Freeman W T. Example-based super-resolution.
IEEE Computer Graphics and Applications,2002,22(2):56-65
|
CSCD被引
215
次
|
|
|
|
14.
Daubechies I. An iterative thresholding algorithm for linear inverse problems with a sparsity constraint.
Communications on Pure and Applied Mathematics,2004,57(11):1413-1457
|
CSCD被引
281
次
|
|
|
|
|