南海水合物黏土沉积物力学特性试验模拟研究
EXPERIMENTAL STUDY ON THE STATIC MECHANICAL PROPERTIES OF HYDRATE-BEARING SILTY-CLAY IN THE SOUTH CHINA SEA
查看参考文献21篇
文摘
|
利用自行研制的含水合物沉积物合成、分解与力学性质测量一体化试验设备,以南海水合物区域的海底粉质黏土作为骨架,制备含水合物沉积物样品,并对其进行了三轴压缩试验研究,获得了水合物分解前后的应力应变曲线和抗剪强度特性. 结果表明:在水合物饱和度0%~45% 的范围内,水合物沉积物的应力应变曲线均表现为弹塑性变形,存在明显的应变硬化现象;抗剪强度、内摩擦角和黏聚力随水合物饱和度的增加而增加. 相对而言,内摩擦角随饱和度增加幅度较小,其他参数在水合物饱和度超过25% 时,呈陡然增高趋势;水合物分解后导致抗剪强度最大可降低为初始的1/4,不同初始饱和度条件下水合物完全分解后沉积物的抗剪强度基本相等,并大于同等围压条件下初始不含水合物的沉积物抗剪强度. |
其他语种文摘
|
By using an integrated experimental apparatus for syntheses of hydrate-bearing sediment (HBS) and tri-axial mechanical tests, a series of static tests were conducted on the silty-clay containing tetra-hydro-furan (THF) hydrate. The samples were prepared with the silty-clay obtained from the South China Sea where gas hydrate has been found. The stress-strain curves before and after hydrate dissociation and the strength parameters were obtained. It is shown that the hydrate-bearing silty-clay behaves as elastic-plastic failure and obvious strain hardening. The failure stress (the stress difference of the maximum and minimum stresses), internal friction angle and cohesion increase with the rise of hydrate saturation. The internal friction angle increases a little bit with the rise of hydrate saturation, while the other parameters increase rapidly once the hydrate saturation is over 25%, which is agreed well with the change of hydrate occurrence form in the pore of HBS. The dissociation of hydrate can cause the sediment’s strength decrease to be 1/4 of the initial value. The strengths of the sediments after hydrate dissociation at different initial hydrate saturations are almost the same and larger than that of the sediment initially without hydrate. |
来源
|
力学学报
,2015,47(3):521-528 【核心库】
|
DOI
|
10.6052/0459-1879-14-424
|
关键词
|
水合物沉积物
;
黏土
;
应力应变曲线
;
抗剪强度
|
地址
|
1.
中国海洋大学, 青岛, 266100
2.
中国科学院力学研究所, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
建筑科学 |
基金
|
国家自然科学基金
;
国土资源部中国地质调查局项目
|
文献收藏号
|
CSCD:5426231
|
参考文献 共
21
共2页
|
1.
Koh C A. Towards a fundamental understanding of natural gas hydrates.
Chemical Society Reviews,2002,31:157
|
CSCD被引
27
次
|
|
|
|
2.
Kvenvolden K A. The global occurrence of natural gas hydrate.
Geophysical Monograph,2001,124:3-18
|
CSCD被引
15
次
|
|
|
|
3.
张洪涛. 中国天然气水合物调查研究现状及其进展.
中国地质,2007,34(6):953-961
|
CSCD被引
68
次
|
|
|
|
4.
王淑云. 水合物沉积物力学性质的研究现状.
力学进展,2009,39(2):176-188
|
CSCD被引
13
次
|
|
|
|
5.
Winters W J. Physical properties and rock physics models of sediment containing natural and laboratoryformed methane gas hydrate.
American Mineralogist,2004,89:1221-1227
|
CSCD被引
47
次
|
|
|
|
6.
Winters W J. Methane gas hydrate effect on sediment acoustic and strength properties.
Journal of Petroleum Science and Engineering,2007,56:127-135
|
CSCD被引
66
次
|
|
|
|
7.
Hyodo M. Shear behaviour of methane hydrate-bearing sand.
Proceedings of 17th International Offshore and Polar Engineering Conference,2007:1326-1333
|
CSCD被引
1
次
|
|
|
|
8.
Masui A. Mechanical properties of sandy sediment cotaining marine gas hydrates in deep sea offshore Japan.
Proceedings of 17th International Offshore and Polar Engineering Conference, Ocean Mining Symposium,2007:53-56
|
CSCD被引
2
次
|
|
|
|
9.
Miyazaki K. Triaxial compressive properties of artificial methane-hydrate-bearing-sediment.
Journal of Geophysical Research,2011,116:B06102
|
CSCD被引
51
次
|
|
|
|
10.
Clayton C R I. The effects of disseminated methane hydrate on the dynamic stiffness and damping of a sand.
Geotechnique,2005,55(6):423-434
|
CSCD被引
21
次
|
|
|
|
11.
Zhang X H. Experimental study on mechanical properties of methane-hydrate-bearing sediments.
Acta Mechanica Sinica,2012,28(5):1356-1366
|
CSCD被引
4
次
|
|
|
|
12.
张旭辉. 天然气水合物沉积物力学性质的试验研究.
岩土力学,2010,31(10):3069-3074
|
CSCD被引
61
次
|
|
|
|
13.
Lu X B. Study on the Mechanical Properties of the tetrahydrofuran hydrate deposit.
Proceedings of 18th International Offshore and Polar Engineering Conference,2008:57-60
|
CSCD被引
1
次
|
|
|
|
14.
魏厚振. 不同水合物含量含二氧化碳水合物砂三轴试验研究.
岩土力学,2011,32(Supp.2):198-203
|
CSCD被引
24
次
|
|
|
|
15.
李洋辉. 天然气水合物三轴压缩试验研究进展.
天然气勘探与开发,2010,33(2):51-55
|
CSCD被引
2
次
|
|
|
|
16.
李令东. 水合物沉积物试验岩样制备及力学性质研究.
中国石油大学(自然科学版),2012,36(4):97-101
|
CSCD被引
20
次
|
|
|
|
17.
Yun T S. Mechanical properties of sand, silt and clay containing tetrahydrofuran hydrate.
Journal of Geophysical Research,112:B04106
|
CSCD被引
1
次
|
|
|
|
18.
Waite W F. Physical properties of hydrate-bearing sediments.
Reviews of Geophysics, RG4003,2009,47:1-38
|
CSCD被引
77
次
|
|
|
|
19.
吴青柏. 冻结粗砂土中甲烷水合物形成CT试验研究.
天然气地球科学,2006,17(2):239-248
|
CSCD被引
12
次
|
|
|
|
20.
Nagashima K. Encapsulation of saline solution by tetrahydrofuran clathrate hydrates and inclusion migration by recrystallization.
Journal of Physical Chemistry B,2005,109:10147-10153
|
CSCD被引
5
次
|
|
|
|
|