高强铝合金中间相Al_2 Cu,Al_2 CuMg和MgZn_2性能的第一性原理计算
First-principle Calculations of Mechanical Properties of Al_2 Cu, Al_2 CuMg and MgZn_2 Intermetallics in High Strength Aluminum Alloys
查看参考文献32篇
文摘
|
采用第一性原理平面波赝势方法,计算Al-Zn-Mg-Cu系高强铝合金主要中间相Al_2Cu,Al_2CuMg和MgZn_2的结合能、形成焓、弹性常数及态密度。计算结果表明: 3相结合能按MgZn_2 > Al_2CuMg > Al_2Cu顺序递减;形成焓按MgZn_2 > Al_2Cu > Al_2CuMg顺序递减; Al_2Cu具有很高的弹性模量,同时具有一定的塑性,可以作为合金的强化相; Al_2CuMg是典型的脆性相,并表现出明显的各向异性,容易诱导产生裂纹; MgZn_2具有良好的塑性,同时熔点较低,是合金的主要强化相; 3相中均存在离子键的相互作用,提高了结构稳定性;通过适当降低Cu,Mg含量,提高Zn的含量,有利于生成MgZn_2相,进一步提高合金的综合性能。 |
其他语种文摘
|
Structural stabilities,mechanical properties and electronic structures of Al_2Cu,Al_2CuMg and MgZn_2 intermetallics in Al-Zn- Mg-Cu aluminum alloys were determined from the first-principle calculations by VASP based on the density functional theory. The results show that the cohesive energy (Ecoh) decreases in the order MgZn_2 > Al_2CuMg > Al_2Cu,whereas the formation enthalpy (ΔH) decreases in the order MgZn_2 > Al_2Cu > Al_2CuMg. Al_2Cu can act as a strengthening phase for its ductile and high Young’s modulus. The Al_2CuMg phase exhibits elastic anisotropy and may act as a crack initiation point. MgZn_2 has good plasticity and low melting point, which is the main strengthening phase in the Al-Zn-Mg-Cu aluminum alloys. Metallic bonding mode coexists with a fractional ionic interaction in Al_2Cu,Al_2CuMg and MgZn_2,and that improves the structural stability. In order to improve the alloys’performance further, the generation of MgZn_2 phase should be promoted by increasing Zn content while Mg and Cu contents are decreased properly. |
来源
|
航空材料学报
,2016,36(6):1-8 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2016.6.001
|
关键词
|
高强铝合金
;
中间相
;
第一性原理
;
力学性能
|
地址
|
1.
中南大学材料科学与工程学院, 长沙, 410083
2.
中南大学材料科学与工程学院, 有色金属材料科学与工程教育部重点实验室, 长沙, 410083
3.
中南大学轻合金研究院, 长沙, 410083
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
国家973计划
|
文献收藏号
|
CSCD:5871226
|
参考文献 共
32
共2页
|
1.
方华婵. Al-Zn-Mg-Cu系超强铝合金的研究现状与展望.
粉末冶金材料科学与工程,2009,14(6):351-358
|
CSCD被引
32
次
|
|
|
|
2.
王祝堂.
铝合金及其加工手册,2000:262-264
|
CSCD被引
1
次
|
|
|
|
3.
张新明. 高强铝合金的发展及其材料的制备加工技术.
金属学报,2015,51(3):257-271
|
CSCD被引
91
次
|
|
|
|
4.
杨修波.
Al-Zn-Mg(Cu)合金的热处理、微观结构与性能研究,2014
|
CSCD被引
3
次
|
|
|
|
5.
Zhang J. Structural,elastic and electronic properties of θ (Al_2Cu) and S (Al_2CuMg) strengthening precipitates in Al-Cu-Mg series alloys: First-principles calculations.
Solid State Communications,2012,152(23):2100-2104
|
CSCD被引
16
次
|
|
|
|
6.
韩逸. 热力学计算优化Al-Zn-Mg-Cu合金成分.
中国有色金属学报,2011,21(1):179-184
|
CSCD被引
7
次
|
|
|
|
7.
Furthmuller J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set.
Physical Review B,1996,54(16):11169-11186
|
CSCD被引
3390
次
|
|
|
|
8.
Joubert D. From ultrasoft pseudopotentials to the projector augmented-wave method.
Physical Review B,1999,59(3):1758-1775
|
CSCD被引
2193
次
|
|
|
|
9.
Burke K. Generalized gradient approximation made simple.
Physical Review Letters,1996,77(18):3865-3868
|
CSCD被引
5494
次
|
|
|
|
10.
Pack J D. Special points for Brillouin- zone integrations.
Physical Review B,1976,13(12):5188-5192
|
CSCD被引
2251
次
|
|
|
|
11.
Grin Y. CuAl_2 revisited: composition,crystal structure,chemical bonding,compressibility and Raman spectroscopy.
Journal of Solid State Chemistry,2006,179(6):1707-1719
|
CSCD被引
2
次
|
|
|
|
12.
Chen H. First-principles investigation of the elastic,Vickers hardness and thermodynamic properties of Al-Cu intermetallic compounds.
Superlattices and Microstructures,2015,79(2):156-165
|
CSCD被引
4
次
|
|
|
|
13.
Calvert L D.
Pearson's handbook of crystallographic data for intermetallic phases,1991
|
CSCD被引
3
次
|
|
|
|
14.
Heying B. Structure refinement of the S-phase precipitate MgCuAl_2.
Chem Inform,2005,36(33):491-494
|
CSCD被引
1
次
|
|
|
|
15.
Yang J. Extended application of edge-to-edge matching model to HCP/HCP (α- Mg /MgZn_2) system in magnesium alloys.
Materials Science and Engineering: A,2007,460/461(5):296-300
|
CSCD被引
5
次
|
|
|
|
16.
Komura Y. Structural studies of stacking variants in Mg-base Friauf-Laves phases.
Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry,1980,36(7):1548-1554
|
CSCD被引
16
次
|
|
|
|
17.
刘俊涛. Al-9.5Zn-2.0Mg-1.7Cu合金的热力学计算.
航空材料学报,2013,33(6):1-7
|
CSCD被引
5
次
|
|
|
|
18.
Hill R. The elastic behaviour of a crystalline aggregate.
Proceedings of the Physical Society A,1952,65(5):349-357
|
CSCD被引
509
次
|
|
|
|
19.
Watt J P. Clarification of the Hashin- Shtrikman bounds on the effective elastic moduli of polycrystals with hexagonal,trigonal,and tetragonal symmetries.
Journal of Applied Physics,1980,51(3):1525-1531
|
CSCD被引
14
次
|
|
|
|
20.
Watt J P. Hashin-Shtrikman bounds on the effective elastic moduli of polycrystals with orthorhombic symmetry.
Journal of Applied Physics,1979,50(10):6290-6295
|
CSCD被引
12
次
|
|
|
|
|