煤油燃料旋转爆轰波起爆与传播特性实验研究
Experimental Research on Initiation and Propagation Characteristics of Kerosene Fuel Rotating Detonation Wave
查看参考文献21篇
文摘
|
为研究煤油燃料旋转爆轰波的起爆与传播特性,开展气体-液体两相旋转爆轰发动机实验研究。旋转爆轰发动机环形燃烧室内径120 mm、外径153 mm、长240 mm,煤油为燃料、富氧空气为氧化剂,通过氢气/氧气微小型脉冲爆轰发动机进行点火;基于燃烧室内的高频压力,分析气体-液体两相旋转爆轰波的起爆过程、传播特性以及发动机的工作特性。实验结果表明:混合物的反应活性至关重要,当氧化剂中氧含量偏低时,混合物反应活性低,旋转爆轰波将无法起爆,直至氧含量增加到39.2%,才能形成自持传播的爆轰波;爆轰波成功起爆后均以双波对撞模态传播,波速为815~920 m/s;在贫油条件下,爆轰波传播速度随着当量比提高呈增加趋势;当空气质量流量大于822 g/s时,发动机基本以缓燃形式工作。 |
其他语种文摘
|
A rotating detonation engine(RDE) was test to study the initiation and propagation characteristics of kerosene fuel rotating detonation wave. The inner diameter, outer diameter and length of RDE annular combustor are 120 mm, 153 mm and 240 mm, respectively. It is ignited by a hydrogen/oxygen micro-pulse detonation engine with kerosene and oxygen-rich air used as fuel and oxidant, respectively. The initiation process and propagation of gas-liquid two-phase rotating detonation wave, and the operation characteristics of engine are analyzed from high-frequency pressure signals in combustor. The test results indicate that the reactivity of mixtures plays an important role on the initiation of detonation wave. When the content of oxygen in the oxidant is low, the reactivity of the mixture is low, and the rotating detonation wave fails to be initiated. It is until the oxygen content increases to 39.2% that the rotating detonation wave can be formed. The rotating detonation wave always propagates in two-wave collision mode with the wave velocity range of 815-920 m/s after successful initiation. The velocity of detonation wave tends to rise with the increase in equivalence ratio under lean fuel condition. The engine mainly works in a deflagration mode when the mass flow rate of air is more than 822 g/s. |
来源
|
兵工学报
,2020,41(7):1339-1346 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2020.07.011
|
关键词
|
旋转爆轰发动机
;
气体-液体两相
;
旋转爆轰波
;
煤油燃料
;
起爆与传播特性
|
地址
|
1.
西安近代化学研究所, 陕西, 西安, 710065
2.
南京理工大学, 瞬态物理国家重点实验室, 江苏, 南京, 210094
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
航空 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:6787718
|
参考文献 共
21
共2页
|
1.
王建平. 连续旋转爆轰发动机的研究进展.
实验流体力学,2015,29(4):12-25
|
CSCD被引
6
次
|
|
|
|
2.
Bykovskii F A. Continuous spin detonation in annular combustors.
Combustion, Explosion and Shock Waves,2005,41(4):449-459
|
CSCD被引
19
次
|
|
|
|
3.
Bykovskii F A. Continuous spin detonation of fuel-air mixtures.
Combustion, Explosion, and Shock Waves,2006,42(4):463-471
|
CSCD被引
47
次
|
|
|
|
4.
Bykovskii F A. Continuous spin detonation of hydrogen-oxygen mixture. 1. annular cylindrical combustor.
Combustion, Explosion, and Shock Waves,2008,44(2):150-162
|
CSCD被引
17
次
|
|
|
|
5.
Frolov S M. Continuous detonation combustion of ternary "hydrogen-liquid propane-air" mixture in annular combustor.
International Journal of Hydrogen Energy,2017,42(26):16808-16820
|
CSCD被引
11
次
|
|
|
|
6.
Kindracki J. Experimental research on rotating detonation in liquid fuel-gaseous air mixtures.
Aerospace Science and Technology,2015,43:445-453
|
CSCD被引
41
次
|
|
|
|
7.
Francois F. MBDA R&T effort on pulsed and continuous detonation wave engines.
Transactions of Nanjing University of Aeronautics & Astronautics,2011,28(1):2583-2589
|
CSCD被引
1
次
|
|
|
|
8.
何煦虹. MBDA公布英仙座超声速导弹系统概念.
飞航导弹,2012(2):3-6
|
CSCD被引
1
次
|
|
|
|
9.
Liu Y S. Spectral analysis and self-adjusting mechanism for oscillation phenomenon in hydrogen-oxygen continuously rotating detonation engine.
Chinese Journal of Aeronautics,2015,28(3):669-675
|
CSCD被引
13
次
|
|
|
|
10.
Xie Q F. Analysis of operating diagram for H_2/air rotating detonation combustors under lean fuel condition.
Energy,2018,151:408-419
|
CSCD被引
25
次
|
|
|
|
11.
刘世杰.
连续旋转爆震波结构、传播模态及自持机理研究,2012
|
CSCD被引
31
次
|
|
|
|
12.
Lin W. Experimental study on propagation mode of H_2/air continuously rotating detonation wave.
International Journal of Hydrogen Energy,2015,40(4):1980-1993
|
CSCD被引
22
次
|
|
|
|
13.
Peng H Y. The effect of cavity on ethylene-air continuous rotating detonation in the annular combustor.
International Journal of Hydrogen Energy,2019,44(26):14032-14043
|
CSCD被引
14
次
|
|
|
|
14.
魏万里. 氧化剂喷注面积对连续旋转爆轰波传播特性影响的实验研究.
兵工学报,2018,39(12):2345-2353
|
CSCD被引
8
次
|
|
|
|
15.
郑权. 倾斜环缝喷孔式连续旋转爆轰发动机试验.
推进技术,2014,35(4):570-576
|
CSCD被引
18
次
|
|
|
|
16.
Deng L. The feasibility of mode control in rotating detonation engine.
Applied Thermal Engineering,2018,129:1538-1550
|
CSCD被引
11
次
|
|
|
|
17.
Zhou S B. Experimental investigation on propagation characteristics of rotating detonation wave with a hydrogen-ethylene-acetylene fuel.
Acta Astronautica,2019,157:310-320
|
CSCD被引
9
次
|
|
|
|
18.
王迪. 煤油两相连续旋转爆震燃烧室工作特性试验研究.
推进技术,2017,38(2):471-480
|
CSCD被引
20
次
|
|
|
|
19.
郑权. 当量比对液体燃料旋转爆轰发动机爆轰影响实验研究.
推进技术,2015,36(6):947-952
|
CSCD被引
31
次
|
|
|
|
20.
李宝星. 连续旋转爆轰发动机气液两相爆轰波传播特性二维数值研究.
固体火箭技术,2015,38(5):646-652
|
CSCD被引
11
次
|
|
|
|
|