全固态锂电池界面的机械失效模型综述
Review on Mechanical Failure Models for Interfaces of All-Solid-State Lithium Metal Batteries
查看参考文献58篇
文摘
|
全固态锂电池具有高能量密度和高安全性能等优点,有望替代传统锂电池成为下一代可移动储备.然而,全固态结构也给这种新型电池的应用带来全新的挑战,阻碍其商业化的进程,其中很重要的一个挑战就是机械不稳定性.首先,尽管固态电解质具有较高刚度与强度,理论上应该可以阻挡锂枝晶的穿透,但在其使用过程中仍能观察到锂枝晶的生长,这与高刚度电解质可抵制锂枝晶生长的理论相悖.其次,与液态电解质相比,固态电解质刚度大,在电极活性材料充放电时不能始终保持与活性材料的有效接触,可能导致活性颗粒和电解质的界面分层.因此,解释这些现象并提供解决策略对促进全固态锂电池的广泛应用至关重要.本文旨在总结近年来关于全固态锂电池不同界面处机械失效的力化耦合模型,主要包括以下两个方面:(1)锂金属负极与固态电解质界面处锂枝晶的形成与生长;(2)活性颗粒锂化/脱锂化引起的界面分层和破裂.本文从理论模型的角度总结了全固态锂离子电池中不同界面上的机械失效行为,旨在为全固态锂离子电池的模型建立与结构优化提供借鉴思路. |
其他语种文摘
|
All-solid-state lithium metal batteries (ASSLMBs) are promising substitutes for traditional lithium-ion batteries as the next generation of mobile storage thanks to their high energy density and low risk of fire hazard. However, the all-solid-state structure also brings new challenges to the wide application of ASSLMBs, which hinders their commercialization process. One of the most critical challenges is their mechanical instability. First, although solid electrolytes are expected to suppress lithium dendritic growth because of their high stiffness and strength, lithium dendrite can still be observed during charge and discharge, which is against the intuition that "strong" electrolyte can resist lithium dendrite. Secondly, compared with the liquid electrolytes, the solid electrolytes are much stiffer, making it much more difficult to maintain effective contact with active materials during charging and discharging cycles, which may lead to interface delamination between active particles and electrolyte. Hence, it is important to understand the mechanisms of these phenomena and provide solutions to promote the application of ASSLMBs. The purpose of this paper is to summarize the mechanically coupled models that account for interfacial failure of ASSLMBs in recent years, and it consists of two aspects: (1) the formation and growth of lithium dendrites at the lithium metal anode/solid electrolyte interface; (2) interfacial delamination and fragmentation caused by lithiation/delithiation of active particles. In this paper, the mechanical failure at different interfaces in ASSLMBs are summarized from the perspective of theoretical modeling, in order to provide reference ideas for the modeling and structural optimization of ASSLMBs. |
来源
|
力学季刊
,2022,43(3):471-481 【扩展库】
|
DOI
|
10.15959/j.cnki.0254-0053.2022.03.001
|
关键词
|
全固态电池
;
锂离子电池
;
锂枝晶
;
机械失效
;
界面
;
力化耦合
;
聚合物固态电解质
;
无机固态电解质
|
地址
|
同济大学航空航天与力学学院, 上海, 200092
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
0254-0053 |
学科
|
力学 |
基金
|
国家自然科学基金
;
上海市科学技术委员会“扬帆计划”
|
文献收藏号
|
CSCD:7301848
|
参考文献 共
58
共3页
|
1.
Zhao Y. A review on modeling of electro-chemo-mechanics in lithium-ion batteries.
Journal of Power Sources,2019,413:259-283
|
CSCD被引
24
次
|
|
|
|
2.
Janek J. A solid future for battery development.
Nature Energy,2016,1(9):16141
|
CSCD被引
157
次
|
|
|
|
3.
Monroe C. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces.
Journal of The Electrochemical Society,2005,152(2):A396
|
CSCD被引
84
次
|
|
|
|
4.
Liu H. Controlling dendrite growth in solid-state electrolytes.
ACS Energy Letters,2020,5(3):833-843
|
CSCD被引
53
次
|
|
|
|
5.
Cao D D. Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations.
Matter,2020,3(1):57-94
|
CSCD被引
1
次
|
|
|
|
6.
Banerjee A. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes.
Chemical Reviews,2020,120(14):6878-6933
|
CSCD被引
84
次
|
|
|
|
7.
Brissot C. Dendritic growth mechanisms in lithium/polymer cells.
Journal of Power Sources,1999,81/82:925-929
|
CSCD被引
55
次
|
|
|
|
8.
Cheng E J. Intergranular Li metal propagation through polycrystalline Li_(6.25)Al_(0.25)La_3Zr_2O_(12) ceramic electrolyte.
Electrochimica Acta,2017,223:85-91
|
CSCD被引
30
次
|
|
|
|
9.
Porz L. Mechanism of lithium metal penetration through inorganic solid electrolytes.
Advanced Energy Materials,2017,7(20):1701003
|
CSCD被引
55
次
|
|
|
|
10.
Spencer J D. Sodium/Na β″alumina interface: effect of pressure on voids.
ACS Applied Materials & Interfaces,2020,12(1):678-685
|
CSCD被引
5
次
|
|
|
|
11.
Liu T. Non-successive degradation in bulk-type all-solid-state lithium battery with rigid interfacial contact.
Electrochemistry Communications,2017,79:1-4
|
CSCD被引
10
次
|
|
|
|
12.
Koerver R. Capacity fade in solid-state batteries: interphase formation and chemo-mechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes.
Chemistry of Materials,2017,29(13):5574-5582
|
CSCD被引
52
次
|
|
|
|
13.
Ryu H H. Capacity fading of Ni-rich Li[Ni_xCo_yMn_(1-x-y)]O_2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-Ion batteries: bulk or surface degradation?.
Chemistry of Materials,2018,30(3):1155-1163
|
CSCD被引
88
次
|
|
|
|
14.
Nakayama M. Factors affecting cyclic durability of all-solid-state lithium polymer batteries using poly(ethylene oxide)-based solid polymer electrolytes.
Energy & Environmental Science,2010,3(12):1995-2002
|
CSCD被引
11
次
|
|
|
|
15.
Bistri D. Modeling the chemo-mechanical behavior of all-solid-state batteries: a review.
Meccanica,2021,56(6):1523-1554
|
CSCD被引
3
次
|
|
|
|
16.
Wang P. Electro-chemo-mechanical issues at the interfaces in solid-state lithium metal batteries.
Advanced Functional Materials,2019,29(27):1900950
|
CSCD被引
14
次
|
|
|
|
17.
Tang Y F. Electro-chemo-mechanics of lithium in solid state lithium metal batteries.
Energy & Environmental Science,2018,11(4):772-799
|
CSCD被引
1
次
|
|
|
|
18.
Zhang F Z. A review of mechanics-related material damages in all-solidstate batteries: mechanisms, performance impacts and mitigation strategies.
Nano Energy,2020,70:104545
|
CSCD被引
6
次
|
|
|
|
19.
Lewis J A. Chemo-mechanical challenges in solid-state batteries.
Trends in Chemistry,2019,1(9):845-857
|
CSCD被引
16
次
|
|
|
|
20.
Wang M J. Transitioning solid-state batteries from lab to market: linking electro-chemo-mechanics with practical considerations.
Joule,2021,5(6):1371-1390
|
CSCD被引
8
次
|
|
|
|
|