帮助 关于我们

返回检索结果

全固态锂电池界面的机械失效模型综述
Review on Mechanical Failure Models for Interfaces of All-Solid-State Lithium Metal Batteries

查看参考文献58篇

文摘 全固态锂电池具有高能量密度和高安全性能等优点,有望替代传统锂电池成为下一代可移动储备.然而,全固态结构也给这种新型电池的应用带来全新的挑战,阻碍其商业化的进程,其中很重要的一个挑战就是机械不稳定性.首先,尽管固态电解质具有较高刚度与强度,理论上应该可以阻挡锂枝晶的穿透,但在其使用过程中仍能观察到锂枝晶的生长,这与高刚度电解质可抵制锂枝晶生长的理论相悖.其次,与液态电解质相比,固态电解质刚度大,在电极活性材料充放电时不能始终保持与活性材料的有效接触,可能导致活性颗粒和电解质的界面分层.因此,解释这些现象并提供解决策略对促进全固态锂电池的广泛应用至关重要.本文旨在总结近年来关于全固态锂电池不同界面处机械失效的力化耦合模型,主要包括以下两个方面:(1)锂金属负极与固态电解质界面处锂枝晶的形成与生长;(2)活性颗粒锂化/脱锂化引起的界面分层和破裂.本文从理论模型的角度总结了全固态锂离子电池中不同界面上的机械失效行为,旨在为全固态锂离子电池的模型建立与结构优化提供借鉴思路.
其他语种文摘 All-solid-state lithium metal batteries (ASSLMBs) are promising substitutes for traditional lithium-ion batteries as the next generation of mobile storage thanks to their high energy density and low risk of fire hazard. However, the all-solid-state structure also brings new challenges to the wide application of ASSLMBs, which hinders their commercialization process. One of the most critical challenges is their mechanical instability. First, although solid electrolytes are expected to suppress lithium dendritic growth because of their high stiffness and strength, lithium dendrite can still be observed during charge and discharge, which is against the intuition that "strong" electrolyte can resist lithium dendrite. Secondly, compared with the liquid electrolytes, the solid electrolytes are much stiffer, making it much more difficult to maintain effective contact with active materials during charging and discharging cycles, which may lead to interface delamination between active particles and electrolyte. Hence, it is important to understand the mechanisms of these phenomena and provide solutions to promote the application of ASSLMBs. The purpose of this paper is to summarize the mechanically coupled models that account for interfacial failure of ASSLMBs in recent years, and it consists of two aspects: (1) the formation and growth of lithium dendrites at the lithium metal anode/solid electrolyte interface; (2) interfacial delamination and fragmentation caused by lithiation/delithiation of active particles. In this paper, the mechanical failure at different interfaces in ASSLMBs are summarized from the perspective of theoretical modeling, in order to provide reference ideas for the modeling and structural optimization of ASSLMBs.
来源 力学季刊 ,2022,43(3):471-481 【扩展库】
DOI 10.15959/j.cnki.0254-0053.2022.03.001
关键词 全固态电池 ; 锂离子电池 ; 锂枝晶 ; 机械失效 ; 界面 ; 力化耦合 ; 聚合物固态电解质 ; 无机固态电解质
地址

同济大学航空航天与力学学院, 上海, 200092

语种 中文
文献类型 综述型
ISSN 0254-0053
学科 力学
基金 国家自然科学基金 ;  上海市科学技术委员会“扬帆计划”
文献收藏号 CSCD:7301848

参考文献 共 58 共3页

1.  Zhao Y. A review on modeling of electro-chemo-mechanics in lithium-ion batteries. Journal of Power Sources,2019,413:259-283 CSCD被引 24    
2.  Janek J. A solid future for battery development. Nature Energy,2016,1(9):16141 CSCD被引 157    
3.  Monroe C. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. Journal of The Electrochemical Society,2005,152(2):A396 CSCD被引 84    
4.  Liu H. Controlling dendrite growth in solid-state electrolytes. ACS Energy Letters,2020,5(3):833-843 CSCD被引 53    
5.  Cao D D. Lithium dendrite in all-solid-state batteries: growth mechanisms, suppression strategies, and characterizations. Matter,2020,3(1):57-94 CSCD被引 1    
6.  Banerjee A. Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chemical Reviews,2020,120(14):6878-6933 CSCD被引 84    
7.  Brissot C. Dendritic growth mechanisms in lithium/polymer cells. Journal of Power Sources,1999,81/82:925-929 CSCD被引 55    
8.  Cheng E J. Intergranular Li metal propagation through polycrystalline Li_(6.25)Al_(0.25)La_3Zr_2O_(12) ceramic electrolyte. Electrochimica Acta,2017,223:85-91 CSCD被引 30    
9.  Porz L. Mechanism of lithium metal penetration through inorganic solid electrolytes. Advanced Energy Materials,2017,7(20):1701003 CSCD被引 55    
10.  Spencer J D. Sodium/Na β″alumina interface: effect of pressure on voids. ACS Applied Materials & Interfaces,2020,12(1):678-685 CSCD被引 5    
11.  Liu T. Non-successive degradation in bulk-type all-solid-state lithium battery with rigid interfacial contact. Electrochemistry Communications,2017,79:1-4 CSCD被引 10    
12.  Koerver R. Capacity fade in solid-state batteries: interphase formation and chemo-mechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chemistry of Materials,2017,29(13):5574-5582 CSCD被引 52    
13.  Ryu H H. Capacity fading of Ni-rich Li[Ni_xCo_yMn_(1-x-y)]O_2 (0.6≤x≤0.95) cathodes for high-energy-density lithium-Ion batteries: bulk or surface degradation?. Chemistry of Materials,2018,30(3):1155-1163 CSCD被引 88    
14.  Nakayama M. Factors affecting cyclic durability of all-solid-state lithium polymer batteries using poly(ethylene oxide)-based solid polymer electrolytes. Energy & Environmental Science,2010,3(12):1995-2002 CSCD被引 11    
15.  Bistri D. Modeling the chemo-mechanical behavior of all-solid-state batteries: a review. Meccanica,2021,56(6):1523-1554 CSCD被引 3    
16.  Wang P. Electro-chemo-mechanical issues at the interfaces in solid-state lithium metal batteries. Advanced Functional Materials,2019,29(27):1900950 CSCD被引 14    
17.  Tang Y F. Electro-chemo-mechanics of lithium in solid state lithium metal batteries. Energy & Environmental Science,2018,11(4):772-799 CSCD被引 1    
18.  Zhang F Z. A review of mechanics-related material damages in all-solidstate batteries: mechanisms, performance impacts and mitigation strategies. Nano Energy,2020,70:104545 CSCD被引 6    
19.  Lewis J A. Chemo-mechanical challenges in solid-state batteries. Trends in Chemistry,2019,1(9):845-857 CSCD被引 16    
20.  Wang M J. Transitioning solid-state batteries from lab to market: linking electro-chemo-mechanics with practical considerations. Joule,2021,5(6):1371-1390 CSCD被引 8    
引证文献 3

1 冯振华 全固态锂电池热安全性研究进展 精细化工,2024,41(5):960-970
CSCD被引 0 次

2 张肖扬 考虑表面多尺度几何特征的三维多层结构接触响应研究 力学季刊,2024,45(2):350-362
CSCD被引 0 次

显示所有3篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号