弱有限元方法简论
BASICS OF WEAK GALERKIN FINITE ELEMENT METHODS
查看参考文献34篇
文摘
|
本文简述弱有限元方法(weak Galerkin finite element methods)的数学基本原理和计算机实现.弱有限元方法对间断函数引入广义弱微分,并将其应用于偏微分方程相应的变分形式进行数值求解,而数值解的弱连续性则通过稳定子或光滑子来实现.弱有限元方法针对广义函数而构建,是经典有限元方法的一种自然拓广,且能够弥补经典有限元方法的某些缺憾,也因此在科学与工程计算领域具有广泛的应用前景. |
其他语种文摘
|
This article introduces the basic principles and some recent developments of weak Galerkin finite element methods (WG-FEM), including their mathematical theory and computer implementation. The WG-FEM, by design, makes use of discontinuous piecewise polynomials on finite element partitions consisting of polygons and polyhedrons of arbitrary shape. The weak Galerkin methods provide necessary weak continuities for the approximate solutions by using weakly defined derivatives and parameter-free stabilizers. The WG-FEM is a natural extension of the standard Galerkin finite element method (FEM), and is advantageous over the standard FEM in some applications. The weak Galerkin methods thus have great potentials in applied problems arising from science and engineering. |
来源
|
计算数学
,2016,38(3):289-308 【核心库】
|
关键词
|
弱有限元方法
;
弱导数
;
多边形或多面体剖分
|
地址
|
1.
美国国家科学基金会, 美国, 阿灵顿, 22230
2.
阿肯色大学小石城分校数学系, 美国, 小石城, 72204
3.
吉林大学数学学院, 长春, 130012
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-7791 |
学科
|
数学 |
基金
|
supported by the NSF IR/D program
;
supported in part by National Science Foundation
;
国家自然科学基金
;
国家教育部新世纪优秀人才支持计划
|
文献收藏号
|
CSCD:5782887
|
参考文献 共
34
共2页
|
1.
Arnold D. Unified analysis of discontinuous Galerkin methods for elliptic problems.
SIAM Journal on Numerical Analysis,2002,39:1749-1779
|
CSCD被引
74
次
|
|
|
|
2.
Bassi F. A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations.
Journal of Computational Physics,1997,131:267-279
|
CSCD被引
86
次
|
|
|
|
3.
Chen L. An Auxiliary Space Multigrid Preconditioner for the Weak Galerkin Method.
Computers and Mathematics with Applications,2015,70:330-344
|
CSCD被引
6
次
|
|
|
|
4.
Chen L. A posteriori error estimates for Weak Galerkin finite element methods for second order elliptic problem.
Journal of Scientific Computing,2014,59:496-511
|
CSCD被引
7
次
|
|
|
|
5.
Chen W. Weak Galerkin method for the coupled Darcy-Stokes flow.
IMA Journal of Numerical Analysis
|
CSCD被引
1
次
|
|
|
|
6.
Cockburn B. An analysis of HDG methods for the vorticity-velocity-pressure formulation of the Stokes problem in three dimensions.
Mathematics of Computation,2012,81:1355-1368
|
CSCD被引
3
次
|
|
|
|
7.
Cockburn B. Unified hybridization of discontinuous Galerkin, mixed, and conforming Galerkin methods for second order elliptic problems.
SIAM Journal on Numerical Analysis,2009,47:1319-136
|
CSCD被引
16
次
|
|
|
|
8.
Cockburn B. The local discontinuous Galerkin method for time-dependent convection-diffusion systems.
SIAM Journal on Numerical Analysis,1998,35:2440-2463
|
CSCD被引
131
次
|
|
|
|
9.
Harris A. Superconvergence of weak Galerkin finite element approximation for second order elliptic problems by L~2 projections.
Journal of Applied Mathematics and Computation,2014,227:610-621
|
CSCD被引
2
次
|
|
|
|
10.
Huang W.
Anisotropic mesh quality measures and adaptation for polygonal meshes
|
CSCD被引
1
次
|
|
|
|
11.
Li Binjie.
Multigrid weak Galerkin finite element method for diffusion problems
|
CSCD被引
1
次
|
|
|
|
12.
Li Q.
Weak Galerkin Finite Element Methods for Parabolic Equations, Numerical Methods for Partial Differential Equations
|
CSCD被引
1
次
|
|
|
|
13.
Mu L. A weak Galerkin mixed finite element method for biharmonic equations.
Numerical Solution of Partial Differential Equations: Theory, Algorithms, and Their Applications,2013,45:247-277
|
CSCD被引
2
次
|
|
|
|
14.
Mu L. C~0 Weak Galerkin finite element methods for the biharmonic equation.
Journal of Scientific Computing,2014,59:437-495
|
CSCD被引
3
次
|
|
|
|
15.
Mu L. A weak Galerkin finite element method for biharmonic equations on polytopal meshes.
Numerical Methods for Partial Differential Equations,2014,30:1003-1029
|
CSCD被引
17
次
|
|
|
|
16.
Mu L. Numerical studies on the Weak Galerkin method for the Helmholtz equation with large wave number.
Communications in Computational Physics,2014,15:1461-1479
|
CSCD被引
6
次
|
|
|
|
17.
Mu L. Weak Galerkin finite element method for the Helmholtz equation with large wave number on polytopal meshes.
IMA
|
CSCD被引
1
次
|
|
|
|
18.
Mu L. A stable numerical algorithm for the Brinkman equations by weak Galerkin finite element methods.
Journal of Computational Physics,2014,273:327-342
|
CSCD被引
14
次
|
|
|
|
19.
Mu L. Weak Galerkin finite element method for second-order elliptic problems on polytopal meshes.
International Journal of Numerical Analysis and Modeling,2015,12:31-53
|
CSCD被引
18
次
|
|
|
|
20.
Mu L. A weak Galerkin finite element method with polynomial reduction.
Journal of Computational and Applied Mathematics,2015,285:45-58
|
CSCD被引
11
次
|
|
|
|
|