喀斯特水库水化学特征及对无机碳沉积通量的指示
Hydrochemical characteristics in karst reservoirs and its implication for inorganic carbon deposition fluxes
查看参考文献39篇
文摘
|
为探究筑坝后不同水库物理、化学、生物过程对水化学和碳循环的影响,本研究对贵州三岔河流域的平寨水库、普定水库以及猫跳河流域的红枫湖水库进行研究,于2018年3月2019年1月分别在入库河流和库区采集了分层水样和沉降颗粒物,并探究水中主要离子及颗粒物通量的时空变化特征及其控制因素.结果表明,水体主要离子的主要来源受碳酸盐溶解影响,并且离子浓度受光合作用控制.红枫湖水库水体水化学类型为Ca-Mg-HCO_3-SO_4型,普定水库、平寨水库水化学类型均为Ca-HCO_3-SO_4.夏季藻类光合作用诱导碳酸盐沉淀导致水体表层Ca~(2+) 、HCO_3~-及溶解态Si浓度降低,其降低幅度分别为20.87% ~44.25% 、33.12% ~51.18% 、48.55% ~96.34%.此外,藻类光合作用也影响C、N、Si等生源要素间的化学计量关系. Mg~(2+)/Ca~(2+)比值在水体垂向剖面上主要受碳酸钙沉淀的控制,而在不同水库之间则主要受流域岩性的控制.根据沉积物捕获器通量计算的平寨水库、普定水库、红枫湖水库夏季颗粒无机碳沉积通量分别为0.74、1.36、0.27 t/(km~2·d),而根据水体Ca~(2+)浓度降低计算的通量分别为0.31~0.64、0.35~0.99、0.09~0.29 t/(km~2·d),根据水体HCO_3~-浓度降低计算的通量分别为0.30~0.65、0.29~1.26、0.12~0.33 t/(km~2·d).其红枫湖水库无机碳沉降通量的实测值与计算值接近,而平寨、普定水库实际沉降通量高于计算值,这可能是有外源输入导致.因此,利用水化学分层数据能对喀斯特水库中的无机碳沉降通量进行合理估算,并且能够得到较好的估算结果,从而指示碳循环的过程. |
其他语种文摘
|
To explore the impact of changes in physical, chemical and biological processes on hydrochemistry and carbon cycle caused by damming, we investigated the flux of suspended particulate and the spatiotemporal variations of major cations and anions (Ca~(2+), Mg~(2+), Na~+, K~+, HCO_3~-, SO_2~(4-), Cl~-) in three karst reservoirs in Guizhou Province, i.e. Puding Reservoir, Pingzhai Reservoir, and Lake Hongfeng, for a whole hydrological year. The results showed that carbonate weathering and algae photosynthesis controlled the spatiotemporal variations of ion concentrations. The hydro-chemical type of Lake Hongfeng is Ca-Mg-HCO_3-SO_4, while it is Ca-HCO_3-SO_4 in Puding Reservoir and Pingzhai Reservoir. During the summer period, as the result of carbonate precipitation induced by algae photosynthesis, the concentrations of Ca~(2+), HCO_3~-, and SiO_2 in the surface water decreased by 20.87% - 44.25%, 33.12% -51.18%, and 48.55% -96.34%, respectively. Our results also indicated that the stoichiometric relationships among C, N, Si could be affected by photosynthesis of aquatic photosynthetic organisms. Additionally, it is found that calcite precipitation regulated the Mg~(2+)/Ca~(2+) in water column. Finally, the inorganic carbon fluxes in summer period calculated by sediment traps were 0.74 t/(km~2·d), 1.36 t/(km~2·d), 0.27 t/(km~2·d) for Pingzhai Reservoir, Puding Reservoir and respectively, which are comparable with the fluxes estimated by the concentration differences in Ca~(2+) and HCO_3~- between surface and bottom water layers. The measured fluxes of inorganic carbon in Pingzhai Reservoir and Puding Reservoir by sediment traps are higher than the calculated one, suggesting a certain amount of allochthonous inorganic carbon input due to the strong hydrological condition. Therefore, it is an alternative way to estimate the deposition flux of inorganic carbon in karst reservoirs by using vertical variations in ion concentrations in stratification period. |
来源
|
湖泊科学
,2021,33(6):1701-1713 【核心库】
|
DOI
|
10.18307/2021.0608
|
关键词
|
水化学
;
喀斯特梯级水库
;
碳酸钙沉淀
;
碳循环
;
平寨水库
;
普定水库
;
红枫湖水库
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550002
2.
中国科学院大学, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1003-5427 |
学科
|
环境污染及其防治 |
基金
|
国家自然科学基金委员会-贵州喀斯特科学研究中心联合基金重大项目
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:7088119
|
参考文献 共
39
共2页
|
1.
Vorosmarty C J. Anthropogenic disturbance of the terrestrial water cycle.
BioScience,2000,50(9):753-765
|
CSCD被引
20
次
|
|
|
|
2.
Kunz M J. Impact of a large tropical reservoir on riverine transport of sediment, carbon, and nutrients to downstream wetlands.
Water Resources Research,2011,47(12):W12531
|
CSCD被引
7
次
|
|
|
|
3.
Maavara T. River dam impacts on biogeochemical cycling.
Nature Reviews Earth & Environment,2020,1(2):103-116
|
CSCD被引
66
次
|
|
|
|
4.
Maavara T. Global phosphorus retention by river damming.
PNAS,2015,112(51):15603-15608
|
CSCD被引
47
次
|
|
|
|
5.
Mendonca R. Organic carbon burial in global lakes and reservoirs.
Nature Communications,2017,8:1694
|
CSCD被引
43
次
|
|
|
|
6.
Schleiss A J. Reservoir sedimentation.
Journal of Hydraulic Research,2016,54(6):595-614
|
CSCD被引
12
次
|
|
|
|
7.
Knoll L B. Burial rates and stoichiometry of sedimentary carbon, nitrogen and phosphorus in Midwestern US reservoirs.
Freshwater Biology,2014,59(11):2342-2353
|
CSCD被引
3
次
|
|
|
|
8.
Gibbs R J. Mechanisms controlling world water chemistry.
Science,1970,170(3962):1088-1090
|
CSCD被引
515
次
|
|
|
|
9.
Hu M H. Major ion chemistry of some large Chinese rivers.
Nature,1982,298(5874):550-553
|
CSCD被引
93
次
|
|
|
|
10.
Torres M A. The acid and alkalinity budgets of weathering in the Andes-Amazon system: Insights into the erosional control of global biogeochemical cycles.
Earth and Planetary Science Letters,2016,450:381-391
|
CSCD被引
8
次
|
|
|
|
11.
张飞. 青海湖水化学的季节性和空间变化及其受自生碳酸盐沉淀的影响.
地球环境学报,2013,4(3):1314-1321
|
CSCD被引
5
次
|
|
|
|
12.
De Montety V. Influence of diel biogeochemical cycles on carbonate equilibrium in a Karst river.
Chemical Geology,2011,283(1/2):31-43
|
CSCD被引
31
次
|
|
|
|
13.
Hammes F. Key roles of pH and calcium metabolism in microbial carbonate precipitation.
Reviews in Environmental Science and Biotechnology,2002,1(1):3-7
|
CSCD被引
41
次
|
|
|
|
14.
Noges P. Role of a productive lake in carbon sequestration within a calcareous catchment.
Science of the Total Environment,2016,550:225-230
|
CSCD被引
3
次
|
|
|
|
15.
Rogerson M. Microbial influence on macroenvironment chemical conditions in alkaline (tufa) streams: Perspectives from in vitro experiments.
Geological Society, London, Special Publications. 336(1),2010:65-81
|
CSCD被引
1
次
|
|
|
|
16.
Gammons C H. Diel cycling and stable isotopes of dissolved oxygen, dissolved inorganic carbon, and nitrogenous species in a stream receiving treated municipal sewage.
Chemical Geology,2011,283(1/2):44-55
|
CSCD被引
8
次
|
|
|
|
17.
Rogerson M. New insights into biological influence on the geochemistry of freshwater carbonate deposits.
Geochimica et Cosmochimica Acta,2008,72(20):4976-4987
|
CSCD被引
4
次
|
|
|
|
18.
Liu Z H. Daytime deposition and nighttime dissolution of calcium carbonate controlled by submerged plants in a Karst spring-fed pool: Insights from high time-resolution monitoring of physico-chemistry of water.
Environmental Geology,2008,55(6):1159-1168
|
CSCD被引
21
次
|
|
|
|
19.
Katz A. Calcium, magnesium and strontium cycling in stratified, hardwater lakes: Lake Kinneret (Sea of Galilee), Israel.
Geochimica et Cosmochimica Acta,2013,105:372-394
|
CSCD被引
1
次
|
|
|
|
20.
Liu Z H. Large and active CO_2 uptake by coupled carbonate weathering.
Earth-Science Reviews,2018,182:42-49
|
CSCD被引
62
次
|
|
|
|
|