帮助 关于我们

返回检索结果

2004-2008年北京城区商业网点空间分布与集聚特征
Spatial distribution and clustering of commercial network in Beijing during 2004-2008

查看参考文献37篇

张珣 1   钟耳顺 1   张小虎 2  
文摘 本文以北京城区内的8个行政区作为研究对象,选取批发和零售业、住宿和餐饮业、居民服务与其他服务业作为具体的商业类别,利用北京第一次、第二次全国经济普查数据,采用核密度(Kernel)、标准差椭圆、Ripley's K(r)函数相结合的GIS点模式分析方法,对比研究了2004年和2008年北京市商业网点分布与空间集聚特征。研究结果表明:①北京商业网点呈现相对集中分布态势,具有向心性并形成明显的集聚区,集聚中心主要分布在五环内,且在两次普查期间有所改变,商业网点空间偏向性差异明显;②以CBD、金融街、王府井、中关村、亚运村和奥运村等为代表的典型商圈对北京商业网点的布局影响十分显著,商业网点在典型商圈周围分布密度较高,呈现集聚中心状态;③ 北京商业网点Ripley's K(r)曲线随距离的变化总体呈现“先增后减”态势,其中受居民小区影响较大的居民服务与其他服务业网点两次普查期间变化剧烈,反映了居民由市中心向外扩散的过程。
其他语种文摘 Internal spatial characteristics of commerce in a city are always one of the research focuses in commercial geography. Based on data from the first and second nation-wide economic census in China, we studied the spatial distribution and clustering of commercial networks in Beijing in 2004 and 2008. The data were divided into three parts: wholesale and retail,accommodation and catering industry, and residential services and other services. Commercial networks data included business name, address, industry classification, business type, income, staff, location code, and so on. Linking location code to business allowed us to obtain the spatial information of commercial networks, which is a basic approach of point pattern analysis in GIS. Based on the spatial characteristics of the commercial networks in Beijing,we chose kernel density, standard deviational ellipse and Ripley's K(r) function as the research methods and take 8 districts in Beijing as study areas. As widely used point pattern analysis approach for single scale, kernel density and standard deviational ellipse can show the distribution characteristics of commercial networks from microscopic and macroscopic view respectively. Furthermore, Ripley's K(r) function is a point pattern analysis method based on distance, which is often used to describe multi-scale of spatial clustering phenomenon. Compared to 2004, distribution and clustering of the commercial networks have changed significantly in 2008. The findings are as follows. (1) The commercial network of Beijing presents concentrated distribution, and forms obvious concentration area and centrality. The concentration center of commercial network is mainly located within the fifth beltway of the city, and the location of concentration center has changed between 2004 and 2008. Moreover, there are significant differences in the spatial bias among the commercial networks in Beijing. (2) Typical business areas are mainly distributed in the concentration areas of the commercial networks. In the result of kernel density, a highly concentrated area is distributed mainly around a typical business area. Examples of typical business areas with great influences on the distribution of commercial networks include CBD, Financial Street, Wangfujing Street, Zhongguancun, Olympic Village and Asian Games Village. (3) Choosing Tian'anmen Square as the center point, the patterns of spatial clustering of wholesale and retail industry and accommodation and catering industry are similar, showing increase first and then decrease. Greatly influenced by the residential areas, residential services and other service industries have changed dramatically between the two censuses. For Ripley's K(r) function value in 2008, the concentration of resident services and other services industries has a lower peak value than that in 2004, reflecting the diffusion for the networks of resident services and other services industries alongside with relocation of the residents from the city center to outer areas.
来源 地理科学进展 ,2013,32(8):1207-1215 【核心库】
关键词 商业网点 ; 空间分布 ; 空间集聚 ; 北京
地址

1. 中国科学院地理科学与资源研究所, 资源与环境信息系统国家重点实验室, 北京, 100101  

2. 南京农业大学国家信息农业工程技术中心, 南京, 210095

语种 中文
文献类型 研究性论文
ISSN 1007-6301
学科 自然地理学
基金 国家863计划
文献收藏号 CSCD:4923057

参考文献 共 37 共2页

1.  安成谋. 兰州市商业中心的区位格局及优势度分析. 地理研究,1990,9(1):28-34 CSCD被引 18    
2.  Besag J. Contribution to the discussion of Dr. Ripley's paper. Journal of the Royal Statistical Society B,1977,39:193-195 CSCD被引 20    
3.  柴彦威. 基于居民购物消费行为的上海城市商业空间结构研究. 地理研究,2008,27(4):897-906 CSCD被引 36    
4.  Converse P D. New laws of retail gravitation. The Journal of Marketing,1949,14(3):379-384 CSCD被引 22    
5.  Davies R L. Marketing Geography: With special reference to retailing,1977 CSCD被引 1    
6.  冯健. 北京市居民购物行为空间结构演变. 地理学报,2007,62(10):1083-1096 CSCD被引 35    
7.  韩会然. 城市居民购物消费行为研究进展与展望. 地理科学进展,2011,30(8):1006-1013 CSCD被引 8    
8.  贺灿飞. 产业地理集中、产业集聚与产业集群:测量与辨识. 地理科学进展,2007,26(2):1-13 CSCD被引 48    
9.  Huff D L. Defining and estimating a trading area. The Journal of Marketing,1964,28(3):34-38 CSCD被引 31    
10.  匡文慧. 1932年以来北京主城区土地利用空间扩张特征与机制分析. 地球信息科学,2009,11(4):428-435 CSCD被引 3    
11.  李桂君. 城市大型零售商业网点布局模型与反问题求解. 商业研究,2002(5):100-102 CSCD被引 1    
12.  Marcon E. Evaluating the geographic concentration of industries using distance-based methods. Journal of Economic Geography,2003,3(4):409-428 CSCD被引 18    
13.  宁越敏. 上海市区商业中心区位的探讨. 地理学报,1984,39(2):163-172 CSCD被引 31    
14.  陶晓波. 基于国外经验的北京市商业布局研究. 北京工商大学学报:社会科学版,2009,24(1):15-20 CSCD被引 1    
15.  Potter R B. The urban retailing system: Location, cognition, and behavior,1982 CSCD被引 1    
16.  Reilly W J. The law of retail gravitation,1931 CSCD被引 19    
17.  Rushton G. Analysis of spatial behavior by revealed space preference. Annals of the Association of American Geographers,1969,59(2):391-400 CSCD被引 13    
18.  Silverman B W. Density estimation for statistics and data analysis,1986 CSCD被引 272    
19.  汤国安. ArcGIS地理信息系统空间分析实验教程,2006 CSCD被引 289    
20.  姜世国(译). 基于GIS的数量方法与应用,2009 CSCD被引 2    
引证文献 51

1 何伟纯 开封市主城区零售商业空间布局及其影响因素 经济地理,2018,38(9):158-167
CSCD被引 9

2 甄茂成 基于复杂网络的商业银行网点布局特征——以北京市中国银行为例 地理科学进展,2013,32(12):1732-1741
CSCD被引 12

显示所有51篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号