河流水-气界面碳交换研究进展及趋势
Recent advances in the research of gaseous carbon exchange between river water and air interface
查看参考文献60篇
文摘
|
河流水-气界面碳交换是区域和全球碳循环的重要环节,对陆地碳平衡核算和碳循环模型优化具有重要意义.介绍了全球河流水-气界面碳交换研究的相关进展,以及现有研究存在的问题,并在此基础上提出今后相关的研究应关注不同地质-生态和人类活动干扰背景下河流及中小河流水-气界面碳交换,要综合利用双碳同位素示踪、化学计量学、生物标志物等方法辨识河流系统中CO_2, CH_4及其他形态碳的来源和迁移转化过程,同时还要利用野外原位观测、传统采样分析和室内培养的方法开展“水-土/沉积物-气”多界面碳交换的系统综合研究,揭示控制河流系统水-气界面碳交换的关键因子,为相关预测模型的建立以及流域的科学管理提供依据. |
其他语种文摘
|
Gaseous carbon exchange between river water and air interface is an important link of regional and global carbon cycle. It is essential to the precious estimation of terrestrial carbon budget and optimization of carbon cycle model. In this paper, the importance and recent progress in the study of riverine CO_2/CH_4 exchange between water-air interface are introduced, and insufficiency in the related study is pointed out. In the future, more researches need to be carried out on CO_2/CH_4 exchange between water-air interface of rivers under various geo-eco system and human impacts. Methods of paired carbon isotopes, stoichiometry, biomarker, etc., should be used to trace the sources of gaseous carbon (and other carbon forms) and their relative contributions, and to discover related carbon turn over processes. It is suggested that researches combining filed in-situ observing, traditional sample analysis, and laboratory experiments be conducted in the study of carbon exchange between multi-interfaces of soil-water, soil-air, sediment-water and water-air. Key factors that affect carbon exchange between water-air interface should be revealed. The study will provide abasis for related model development and watershed management. |
来源
|
上海大学学报. 自然科学版
,2015,21(3):275-285 【扩展库】
|
DOI
|
10.3969/j.issn.1007-2861.2015.01.008
|
关键词
|
河流碳循环
;
水-气界面碳交换
;
陆地碳平衡
;
人类干扰
|
地址
|
1.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550002
2.
上海大学环境与化学工程学院, 上海, 200444
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-2861 |
学科
|
环境科学基础理论 |
基金
|
国家重大科学研究计划
;
国家自然科学基金
;
贵州省科技厅项目
|
文献收藏号
|
CSCD:5461996
|
参考文献 共
60
共3页
|
1.
Raymond P A. Global carbon dioxide emissions from inland waters.
Nature,2013,503(7476):355-359
|
CSCD被引
133
次
|
|
|
|
2.
Wehrli B. Biogeochemistry: conduits of the carbon cycle.
Nature,2013,503(7476):346-347
|
CSCD被引
11
次
|
|
|
|
3.
Richey J E. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO_2.
Nature,2002,416(6881):617-620
|
CSCD被引
65
次
|
|
|
|
4.
Raymond P. Gas exchange in rivers and estuaries: choosing a gas transfer velocity.
Estuaries,2001,24(2):312-317
|
CSCD被引
56
次
|
|
|
|
5.
Wallin M B. Spatiotemporal variability of the gas transfer coefficient (KCO2) in boreal streams: implications for large scale estimates of CO_2 evasion.
Global Biogeochemical Cycles,2011,25(3):GB3025
|
CSCD被引
6
次
|
|
|
|
6.
Butman D. Significant efflux of carbon dioxide from streams and rivers in the United States.
Nature Geoscience,2011,4(12):839-842
|
CSCD被引
38
次
|
|
|
|
7.
Oquist M G. Dissolved inorganic carbon export across the soil/stream interface and its fate in a boreal headwater stream.
Environmental Science & Technology,2009,43(19):7364-7369
|
CSCD被引
4
次
|
|
|
|
8.
Crawford J T. CO_2 and CH4 emissions from streams in a lake-rich landscape: patterns, controls, and regional significance.
Global Biogeochemical Cycles,2014:2013GB004661
|
CSCD被引
1
次
|
|
|
|
9.
Jonsson A. Gas transfer rate and CO_2 flux between an unproductive lake and the atmosphere in northern Sweden.
Journal of Geophysical Research: Biogeosciences,2008,113(G4):G04006
|
CSCD被引
5
次
|
|
|
|
10.
Polsenaere P. Modelling CO_2 degassing from small acidic rivers using water pCO_2 , DIC and delta C-13-DIC data.
Geochimica Et Cosmochimica Acta,2012,91:220-239
|
CSCD被引
3
次
|
|
|
|
11.
Frankignoulle M. A new design of equilibrator to monitor carbon dioxide in highly dynamic and turbid environments.
Water Research,2001,35(5):1344-1347
|
CSCD被引
8
次
|
|
|
|
12.
Lynch J K. Controls of riverine CO_2 over an annual cycle determined using direct, high temporal resolution pCO2 measurements.
Journal of Geophysical Research,2010,115(G3):G03016
|
CSCD被引
4
次
|
|
|
|
13.
Johnson M S. Direct and continuous measurement of dissolved carbon dioxide in freshwater aquatic systems-method and applications.
Ecohydrology,2010,3(1):68-78
|
CSCD被引
7
次
|
|
|
|
14.
Wang F. Seasonal variation of CO_2 diffusion flux from a large subtropical reservoir in East China.
Atmospheric Environment,2015,103:129-137
|
CSCD被引
7
次
|
|
|
|
15.
Dinsmore K J. Temperature and precipitation drive temporal variability in aquatic carbon and GHG concentrations and fluxes in a peatland catchment.
Glob Chang Biol,2013,19(7):2133-2148
|
CSCD被引
10
次
|
|
|
|
16.
Campeau A. Regional contribution of CO_2 and CH4 fluxes from the fluvial network in a lowland boreal landscape of Quebec.
Global Biogeochemical Cycles,2014,28(1):57-69
|
CSCD被引
9
次
|
|
|
|
17.
Vachon D. The relationship between near-surface turbulence and gas transfer velocity in freshwater systems and its implications for floating chamber measurements of gas exchange.
Limnol Oceanogr,2010,55(4):1723-1732
|
CSCD被引
11
次
|
|
|
|
18.
Giesler R. Spatiotemporal variations of pCO_2 and δ~(13)C-DIC in subarctic streams in northern Sweden.
Global Biogeochemical Cycles,2013,27(1):176-186
|
CSCD被引
2
次
|
|
|
|
19.
Koprivnjak J F. Importance of CO_2 evasion from small boreal streams.
Global Biogeochemical Cycles,2010,24(4):GB4003
|
CSCD被引
6
次
|
|
|
|
20.
Wang F S. Human impact on the historical change of CO_2 degassing flux in River Changjiang.
Geochemical Transactions,2007,8:7
|
CSCD被引
9
次
|
|
|
|
|