页岩储层应力敏感性定量评价:思路及应用
QUANTITATIVE EVALUATION OF STRESS SENSITIVITY IN SHALE RESERVOIRS:IDEAS AND APPLICATIONS
查看参考文献81篇
文摘
|
应力敏感性定量评价是页岩油气勘探开发中公认的关键工程难题之一,然而变应力条件下页岩孔缝尺寸及渗透率下降规律等问题至今尚无定论,亟待深入探索.本文从Griffith经典弹性力学解出发,在充分刻画非均质页岩孔隙和微裂缝的基础上,通过建立横截面为椭圆的柱体管束模型,推导得到应力作用下岩石渗透率保持水平的计算公式,基于此给出适宜于非均质页岩油储层的应力敏感性评价思路及覆压渗透率计算公式,最后在中国西部和中部典型页岩油储层中开展了工程应用.研究显示:(1)相同应力状态下,页岩油储层应力敏感程度由储渗空间初始长短轴比值、杨氏模量及泊松比共同控制;(2)裂缝型页岩由于发育长短轴比值较高,其应力敏感程度略高于裂缝发育程度较低的基质型页岩,且杨氏模量越小,两类页岩应力敏感程度差异性越大;(3)在40 MPa的有效应力作用下,裂缝型和基质型页岩油储层渗透率损耗程度最高值分别不足10%和8%,证明页岩应力敏感程度总体较低.应力敏感性对于页岩油原位储量及实际产能的影响程度亟需在工程实际中予以重新审视.研究成果将为页岩油储量的精确评估和采收率的高效提升提供新的理论与实践依据. |
其他语种文摘
|
Quantitative evaluation of stress sensitivity is one of the recognized key engineering problems in shale oil and gas exploration and development.The problems of shale pore size and permeability decline under the condition of variable stress have not been settled yet,and need to be explored further.Based on Griffith's classical elasticity solution,fine characterization of the pores and microcracks of heterogeneous shale,the formula of the retention of rock permeability under stress is derived by establishing a cylinder tube bundle model with elliptical cross-section.Then the stress sensitivity evaluation method and the calculation formula of overburden permeability suitable for heterogeneous shale oil reservoirs are given,respectively.Finally,it has been applied in typical shale oil reservoirs in western and central China.The results show that:(1) under the same stress,the stress sensitivity of shale oil reservoir is jointly controlled by the ratio between the initial major and minor axes of storage and seepage space,Young's modulus,and Poisson's ratio,and has nothing to do with the initial porosity and permeability of shale;(2) The stress sensitivity of fracture-type shale is slightly higher than that of matrix-type shale due to the development of microcracks with high ratio of major and minor axes,and the smaller the Young's modulus,the greater the difference between above two types of shale;(3) Under the effective stress of 40 MPa,the maximum permeability loss of fracture-type and matrix-type shale oil reservoirs is less than 10% and 8%,respectively,which proves that the stress sensitivity of shale is generally low.The impact of stress sensitivity on in-situ reserves and actual productivity of shale oil needs to be reexamined in engineering practice.The conclusion provides the new theoretical and practical basis for the accurate evaluation of shale oil reserves and the efficient improvement of oil recovery. |
来源
|
力学学报
,2022,54(8):2235-2247 【核心库】
|
DOI
|
10.6052/0459-1879-22-262
|
关键词
|
页岩油
;
应力敏感性
;
杨氏模量
;
渗透率
;
孔隙
;
微裂缝
|
地址
|
1.
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
3.
太原理工大学机械与运载工程学院, 太原, 030024
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
力学 |
基金
|
国家自然科学基金资助项目
|
文献收藏号
|
CSCD:7292457
|
参考文献 共
81
共5页
|
1.
郑哲敏. 关于中国页岩气持续开发工程科学研究的一点认识.
科学通报,2016,61(1):34-35
|
CSCD被引
6
次
|
|
|
|
2.
Jia C Z. Unconventional hydrocarbon resources in China and the prospect of exploration and development.
Petroleum Exploration and Development,2012,39(2):139-146
|
CSCD被引
22
次
|
|
|
|
3.
Jin Z J. Several issues worthy of attention in current lacustrine shale oil exploration and development.
Petroleum Exploration and Development,2021,48(6):1471-1484
|
CSCD被引
10
次
|
|
|
|
4.
Zou C N. Energy revolution: From a fossil energy era to a new energy era.
Natural Gas Industry B,2016,3(1):1-11
|
CSCD被引
9
次
|
|
|
|
5.
Wang X H. The time-temperature-maturity relationship: A chemical kinetic model of kerogen evolution based on a developed molecule-maturity index.
Fuel,2020,278:118264
|
CSCD被引
1
次
|
|
|
|
6.
Du S H. Significance of the secondary pores in perthite for oil storage and flow in tight sandstone reservoir.
Marine and Petroleum Geology,2019,110:178-188
|
CSCD被引
3
次
|
|
|
|
7.
陈勉. 页岩油气高效开发的关键基础理论与挑战.
石油钻探技术,2015,43(5):7-14
|
CSCD被引
32
次
|
|
|
|
8.
Zhu W Y. Theoretical study of micropolar fluid flow in porous media.
Advances in Geo-Energy Research,2021,5(4):465-472
|
CSCD被引
1
次
|
|
|
|
9.
Lis-Sledziona A. Petrophysical rock typing and permeability prediction in tight sandstone reservoir.
Acta Geophysica,2019,67(6):1895-1911
|
CSCD被引
2
次
|
|
|
|
10.
El-Amin M F. Stochastic estimation of the slip factor in apparent permeability model of gas transport in porous media.
Transport in Porous Media,2021,137(2):433-449
|
CSCD被引
1
次
|
|
|
|
11.
Zhang Y. Application of locality preserving projection-based unsupervised learning in predicting the oil production for low-permeability reservoirs.
SPE Journal,2021,26(3):1302-1313
|
CSCD被引
4
次
|
|
|
|
12.
Sato M. Effect of bedding planes on the permeability and diffusivity anisotropies of Berea sandstone.
Transport in Porous Media,2019,127(3):587-603
|
CSCD被引
1
次
|
|
|
|
13.
Hong C Y. Fracture initiation and morphology of tight sandstone by liquid nitrogen fracturing.
Rock Mechanics and Rock Engineering,2022,55:1285-1301
|
CSCD被引
1
次
|
|
|
|
14.
Qi C Y. Study on heterogeneity of pore throats at different scales and its influence on seepage capacity in different types of tight carbonate reservoirs.
Geofluids,2020:6657660
|
CSCD被引
1
次
|
|
|
|
15.
Mohagheghian E. Evaluation of shalegas-phase behavior under nanoconfinement in multimechanistic flow.
Industrial & Engineering Chemistry Research,2020,59(33):15048-15057
|
CSCD被引
2
次
|
|
|
|
16.
Yu T. 3D visualization of fluid flow behaviors during methane hydrate extraction by hot water injection.
Energy,2019,188:116110
|
CSCD被引
3
次
|
|
|
|
17.
Cao N. Stress sensitivity of tight reservoirs during pressure loading and unloading process.
Petroleum Exploration and Development,2019,46(1):138-144
|
CSCD被引
6
次
|
|
|
|
18.
Yang C H. Petroleum rock mechanics: An area worthy of focus in geo-energy research.
Advances in Geo-Energy Research,2021,5(4):351-352
|
CSCD被引
1
次
|
|
|
|
19.
Hu Z Z. Stress sensitivity of porosity and permeability of Cobourg limestone.
Engineering Geology,2020,273:105632
|
CSCD被引
2
次
|
|
|
|
20.
Meng Y. Material balance equation of shale gas reservoir considering stress sensitivity and matrix shrinkage.
Arabian Journal of Geosciences,2020,13(13):1-9
|
CSCD被引
1
次
|
|
|
|
|