冲击波作用有/无防护颅脑靶标动态响应规律
Dynamic Physical Response Law of Protected/Unprotected Head Surrogate Under Shock Wave
查看参考文献20篇
文摘
|
为探究真实工况下冲击波作用颅脑动态响应特性,开展单兵火箭弹膛口冲击波作用有/无防护颅脑靶标试验。分析颅脑内不同位置的压力特性和演化历程,并对比有/无防护下颅脑内压力变化。对比结果表明:无头盔颅脑内压力时程曲线表现出非典型冲击波特征,超压上升速度较慢,持续时间较长,并有正负压交替振荡效应,振荡周期为1 ms左右;无头盔颅脑内不同位置,压力峰值差异显著,冲击对侧表现出显著的负压特征,其正压力峰值超过冲击侧近1倍,但不同位置的冲量大小比较接近;头盔防护后颅脑内不同位置的压力衰减率差异显著,带头盔后冲击波对侧颅脑区域压力峰值和冲量衰减较明显并且会削弱或抑制冲击对侧的负压效应,而冲击侧颅脑区域衰减不明显,甚至有部分区域颅脑压力峰值增强。 |
其他语种文摘
|
To explore the dynamic physical response of cranial brain under shock wave in warfare conditions,a physical model of protected/unprotected head surrogate impacted by shock wave from a soldier's rocket muzzle and intracranial pressure is developed. The pressure and evolution of different intracranial parts are analyzed. The intracranial pressure evolution for protected/unprotected head surrogates are compared. Under muzzle shock wave, the time-overpressure curve of unprotected intracranial pressure exhibits atypical shock wave characteristics. Unlike typical shock waves,the overpressure rises more slowly and lasts longer. The overpressure curve exhibits alternating oscillations of positive and negative pressure. The oscillation period is about 1 ms. The peak overpressure varies significantly in different intracranial parts. The counter shock side of the intracranial exhibits a significant negative pressure. The peak positive pressure on the counter shock side is nearly twice of that on the shock side, but the pressure impulses at different intracranial points are close to one another. Overpressure attenuation rates of different protected intracranial parts vary significantly. Compared with other intracranial parts,the overpressure attenuation rate of the counter shock side is highest. Moreover, the negative pressure effect on the counter shock side is weakened when covered with armor. The attenuation rate of the overpressure on the shock side is not obvious. The peak overpressure even increases in some parts with amor covered. |
来源
|
兵工学报
,2022,43(9):2182-2189 【核心库】
|
DOI
|
10.12382/bgxb.2022.0483
|
关键词
|
单兵火箭弹
;
冲击波
;
颅脑靶标
;
头盔
;
超压特性
|
地址
|
1.
南京理工大学机械工程学院, 江苏, 南京, 210094
2.
中国兵器工业第208研究所瞬态冲击技术重点实验室, 北京, 102202
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
武器工业 |
基金
|
国防基础加强计划重点基础研究项目(2019年)
;
瞬态冲击技术重点实验室稳定支持经费项目
|
文献收藏号
|
CSCD:7307362
|
参考文献 共
20
共1页
|
1.
Tan X G. Computational modeling of blast wave interaction with a human body and assessment of traumatic brain injury.
Shock Waves,2017,6:1-16
|
CSCD被引
1
次
|
|
|
|
2.
Petel O E. Experimental models and investigations of blast-induced traumatic brain injury.
Shock Waves,2018,28(6):1-3
|
CSCD被引
1
次
|
|
|
|
3.
Weppner J. Military blast-related traumatic brain injury.
Current Physical Medicine and Rehabilitation Reports,2019,7(4):323-332
|
CSCD被引
1
次
|
|
|
|
4.
栗志杰. 爆炸冲击波作用下颅脑损伤机理的数值模拟研究.
爆炸与冲击,2020,40(1):1-12
|
CSCD被引
2
次
|
|
|
|
5.
赵辉. 原发性颅脑冲击伤的生物力学机制.
创伤外科杂志,2016,18(6):375-378
|
CSCD被引
5
次
|
|
|
|
6.
高玉松. 脑爆震伤动物模型评价.
中国临床神经外科杂志,2018,23(4):285-288
|
CSCD被引
1
次
|
|
|
|
7.
周建国. 创伤性脑损伤动物模型的研究进展.
医学研究生学报,2019,32(5):546-551
|
CSCD被引
2
次
|
|
|
|
8.
Goeller J. Investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury.
Journal of Neurotrauma,2012,29:1970-1981
|
CSCD被引
11
次
|
|
|
|
9.
Frank C. Microcavitation:the key to modeling blast traumatic brain injury.
Concussion,2017,2(3):1-4
|
CSCD被引
3
次
|
|
|
|
10.
Salzar R S. Experimental investigation of cavitation as a possible damage mechanism in blast-induced traumatic brain injury in post-mortem human subject heads.
Journal of Neurotrauma,2016,34(8):1589-1602
|
CSCD被引
8
次
|
|
|
|
11.
Neveen A. A physical head and neck surrogate model to investigate blast-induced mild traumatic brain injury.
Arab Journal of Science Engineering,2015,40:945-958
|
CSCD被引
1
次
|
|
|
|
12.
Ganpule S. Mechanics of blast loading on the head models in the study of traumatic brain injury using experimental and computational approaches.
Biomechanics Modeling in Mechanobiology,2013,12(3):511-531
|
CSCD被引
14
次
|
|
|
|
13.
张翔.
人颅骨力学性能和结构形态的多层次实验研究,2021
|
CSCD被引
1
次
|
|
|
|
14.
郭峰.
硬质PVC低温增韧改性的研究,2014
|
CSCD被引
3
次
|
|
|
|
15.
Thali M J. The "Skin-skull-brain model": a new instrument for the study of gunshot effects.
Forensic Science International,2002,125(2):178-189
|
CSCD被引
2
次
|
|
|
|
16.
Mahoney P F. The effect of helmet materials and simulated bone and tissue layers on bullet behaviour in a gelatine model of overmatch penetrating head injury.
International Journal of Legal Medicine,2017,131:1765-1776
|
CSCD被引
1
次
|
|
|
|
17.
蔡志华. 枪弹冲击防弹头盔致头部非贯穿性损伤的数值模拟研究.
兵工学报,2017,38(6):1097-1105
|
CSCD被引
10
次
|
|
|
|
18.
中国兵器装备集团公司.
轻武器杀伤威力测试用明胶靶标制备与检测方法:WJ 20328-2016,2016
|
CSCD被引
1
次
|
|
|
|
19.
张文超. 爆炸冲击波致颅脑冲击伤数值模拟研究.
北京理工大学学报,2022,26(3):1-10
|
CSCD被引
1
次
|
|
|
|
20.
柳占立. 颅脑爆炸伤致伤机制及防护研究进展.
爆炸与冲击,2022,42(4):1-24
|
CSCD被引
1
次
|
|
|
|
|