基于摄动理论的动态弹道偏差阈值修正方法
Dynamic Threshold Correction Method of Trajectory Deviation Based on Perturbation Theory
查看参考文献11篇
文摘
|
基于摄动落点偏差预测的弹道修正方法具有落点偏差计算精度高,弹上计算量小等优点。研究了基于该理论在二维弹道修正应用中相关的系列问题。基于多元函数的泰勒级数展开理论,推导了完整的摄动落点偏差预测理论模型。基于摄动偏差理论提出了一种修正步长自适应的射角诸元快速求解方法,一般循环解算弹道模型不超过3次即可得到落点误差不超过1 m的射角诸元。基于不同弹道位置上平均弹道误差,给出了偏导数求解中弹道偏差设置方法。提出了一种动态弹道偏差阈值修正方法,选用该方法进行弹道修正,平均弹道修正次数减少29.1%,而弹丸落点CEP增大不明显。 |
其他语种文摘
|
The trajectory correction method based on the perturbation theory of impact-point prediction has the advantages of high accuracy and small amount of calculation. A series of problems related to the application of the perturbation theory to the impact-point prediction in the two-dimensional trajectory correction were studied. Based on the Taylor series expansion theory of multivariate functions,a complete theoretical model for impact-point prediction was derived. Based on the perturbation deviation theory,a modified step-size adaptive method was proposed to solve the shooting angle data quickly. Generally,the firing angle data can be obtained by solving the ballistic model in a cycle no more than 3 times,whose fall-point error is no more than 1 m. Based on the average trajectory error of different trajectory positions,the setting method of trajectory deviation in partial derivative solution was given. The proposed method of dynamic trajectory deviation correction threshold can reduce 29.1% of trajectory correction times without increasing CEP. |
来源
|
弹道学报
,2020,32(2):22-28 【核心库】
|
DOI
|
10.12115/j.issn.1004-499x(2020)02-004
|
关键词
|
弹道
;
二维弹道修正
;
摄动理论
;
落点偏差
;
偏导数
|
地址
|
1.
陆军工程大学石家庄校区导弹工程系, 河北, 石家庄, 050003
2.
陆军工程大学石家庄校区火炮工程系, 河北, 石家庄, 050003
3.
中国人民解放军66069部队, 河南, 洛阳, 471000
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-499X |
学科
|
武器工业 |
基金
|
军队重点预研项目
|
文献收藏号
|
CSCD:6757708
|
参考文献 共
11
共1页
|
1.
Rohinson J W C.
On guidance and control for guided artillery projectiles,Part 1:general considerations:FOI-R-3291-SE,2011
|
CSCD被引
1
次
|
|
|
|
2.
Hahn P V. Predictive guidance of a projectile for hit-to-kill interception.
IEEE Transactions on Control Systems Technology,2009,17(4):745-755
|
CSCD被引
8
次
|
|
|
|
3.
Hainz L C. Modified projectile linear theory for rapid trajectory prediction.
Journal of Guidance,Control,and Dynamics,2005,28(5):1006-1014
|
CSCD被引
14
次
|
|
|
|
4.
李兴隆. 基于线性弹道模型的末段修正弹落点预测.
兵工学报,2015,36(7):1188-1194
|
CSCD被引
8
次
|
|
|
|
5.
张成. 脉冲修正弹药射程预测控制方法.
弹道学报,2010,22(1):20-23
|
CSCD被引
10
次
|
|
|
|
6.
Ghosh A K. Neural models for predicting trajectory performance of an artillery rocket.
Journal of Aerospace Computing,Information and Communication,2004,1(2):112-115
|
CSCD被引
6
次
|
|
|
|
7.
曹营军. 基于BP人工神经网络的末修弹落点预测导引模式.
弹箭与制导学报,2011,31(6):76-78
|
CSCD被引
7
次
|
|
|
|
8.
Kramer K A. Impact time and point predicted using a neural extended Kalman filter.
The 2nd International Conference on Intelligent Sensors,Sensor Networks and Information Processing,2005:199-204
|
CSCD被引
1
次
|
|
|
|
9.
李超旺. 基于摄动原理的火箭弹落点实时预测.
兵工学报,2014,35(8):1164-1171
|
CSCD被引
10
次
|
|
|
|
10.
王毅. 基于摄动理论的弹道修正榴弹落点偏差预测.
弹道学报,2015,27(3):18-23
|
CSCD被引
7
次
|
|
|
|
11.
王钰. 摄动落点预测法的快速建模与基于精度最优的分段预测控制法.
兵工学报,2017,38(5):867-876
|
CSCD被引
7
次
|
|
|
|
|