温度和应变速率对Mg_(61)Cu_(20.3)Ag_(8.7)Er_(10)非晶合金力学行为的影响
Effects of temperature and strain rates on mechanical behavior of Mg_(61)Cu_(20.3)Ag_(8.7)Er_(10) amorphous alloy
查看参考文献16篇
文摘
|
采用XRD、SEM等技术分析了Mg_(61)Cu_(20.3)Ag_(8.7)Er_(10)合金的结构和断口形貌,研究了Mg_(61)Cu_(20.3)Ag_(8.7)Er_(10)非晶合金在不同温度和不同应变速率条件下的力学行为。结果表明,室温下非晶合金的断裂强度随应变速率的增加而降低。-100℃时,非晶合金不仅具有较高的强度,同时还表现出一定的塑性行为,此时,应变速率对于非晶合金的强度和塑性几乎没有影响。 |
其他语种文摘
|
The structures and fracture morphology of Mg_(61)Cu_(20.3)Ag_(8.7)Er_(10) amorphous alloy were analyzed using XRD and SEM.The mechanical behaviors of Mg_(61)Cu_(20.3)Ag_(8.7)Er_(10) amorphous alloy were investigated under different temperatures and strain rates.The results show that at room temperature,the fracture strength of the amorphous alloy is decreased with the increase of strain rate.When the temperature at-100 ℃,the amorphous alloy exhibits high strength as well as certain plasticity,The strain rates have little effects on the strength and plasticity of amorphous alloy. |
来源
|
金属热处理
,2012,37(3):24-27 【核心库】
|
关键词
|
Mg_(61)Cu_(20.3)Ag_(8.7)Er_(10)非晶合金
;
温度
;
应变速率
;
力学行为
|
地址
|
1.
沈阳理工大学材料科学与工程学院, 辽宁, 沈阳, 110159
2.
中国科学院金属研究所, 辽宁, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0254-6051 |
学科
|
金属学与金属工艺 |
基金
|
国家自然科学基金青年科学基金
|
文献收藏号
|
CSCD:4489083
|
参考文献 共
16
共1页
|
1.
Inoue A. Mg-Cu-Y amorphous-alloys with high mechanical strengths produced by a metallic mold casting method.
Materials Transactions JIM,1991,32(7):609-616
|
CSCD被引
80
次
|
|
|
|
2.
Park E S. The effect of Ag addition on the glass-forming ability of Mg-Cu-Y metallic glass alloys.
Journal of Non-Crystalline Solids,2001,279(2/3):154-160
|
CSCD被引
17
次
|
|
|
|
3.
Ma H. A new Mg65 Cu7. 5 Ni7. 5 Zn5Ag5Y10 bulk metallic glass with strong glass-forming ability.
Journal of Materials Research,2003,18(10):2288-2291
|
CSCD被引
25
次
|
|
|
|
4.
Kang H G. Fabrication of bulk Mg-Cu-Ag-Y glassy alloy by squeeze casting.
Materials Transactions JIM,2000,41(7):846-849
|
CSCD被引
17
次
|
|
|
|
5.
Sun Y. Mg-Cu-Ag-Er bulk metallic glasses with high glass forming ability and compressive strength.
Materials Science and Engineering A,2009,502(1/2):148-152
|
CSCD被引
3
次
|
|
|
|
6.
Liu W Y. Fabrication of bulk amorphous Mg65Cu25Gd10 alloy of 12mm rod by water quenching.
Magnesium-Science,Technology and Applications,2005,488/489:211-214
|
CSCD被引
1
次
|
|
|
|
7.
Bruck H A. The dynamic compressive behavior of beryllium bearing bulk metallic glasses.
Journal of Materials Research,1996,11(2):503-511
|
CSCD被引
48
次
|
|
|
|
8.
Li H. Negative strain rate sensitivity and compositional dependence of fracture strength in Zr /Hf based bulk metallic glasses.
Scripta Materialia,2003,49(11):1087-1092
|
CSCD被引
4
次
|
|
|
|
9.
Liu L F. Strain rate-dependent compressive deformation behavior of Nd-based bulk metallic glass.
Intermetallics,2005,13(8):827-832
|
CSCD被引
9
次
|
|
|
|
10.
Ma W F. Effect of strain rate on compressive behavior of Ti-based bulk metallic glass at room temperature.
Journal of Alloys and Compounds,2009,472(1/2):214-218
|
CSCD被引
8
次
|
|
|
|
11.
Xu Y L. Quantitative determination of free volume in Pd40 Ni40 P20 bulk metallic glass.
Scripta Materialia,2010,62(9):674-677
|
CSCD被引
6
次
|
|
|
|
12.
Spaepen F. Homogeneous flow of metallic glasses: A free volume perspective.
Scripta Materialia,2006,54(3):363-367
|
CSCD被引
20
次
|
|
|
|
13.
Argon A S. Plastic-flow in a disordered bubble raft (an analog of a metallic glass).
Materials Science and Engineering,1979,39(1):101-109
|
CSCD被引
11
次
|
|
|
|
14.
Huang R. Inhomogeneous deformation in metallic glasses.
Journal of the Mechanics and Physics of Solids,2002,50(5):1011-1027
|
CSCD被引
29
次
|
|
|
|
15.
Leamy H J. Plastic-flow and fracture of metallic glass.
Metallurgical Transactions,1972,3(3):699-708
|
CSCD被引
24
次
|
|
|
|
16.
Zhang Z F. Fracture mechanisms in bulk metallic glassy materials.
Physical Review Letters,2003,91(4):045505-1-045505-4
|
CSCD被引
41
次
|
|
|
|
|