基于非锂金属负极的锂离子全电池
Lithium-Ion Full Batteries Based on the Anode of Non-Metallic Lithium
查看参考文献84篇
文摘
|
可充电锂离子电池对于电子产品特别是手持设备的发展至关重要,其关键作用同样体现在飞速发展的电动汽车领域。此外,对电力系统的调配(削峰填谷)和新能源发电的并网也是很好的选择。但是传统锂离子电池较低的能量密度常被人诟病。传统石墨负极材料的替代物(如金属氧化物、钛基、锡基、硅基、合金等材料)能有效提高锂离子电池的容量和倍率性能,但目前缺乏充分的全电池实验数据予以证实,也鲜有新型负极材料成功用于商业化的锂离子全电池。由此可见,新型负极材料在锂离子全电池中的研究现状及其商业化应用前景等问题亟需面对和斟酌,也应受到锂离子电池研究者的广泛关注。因此,本文从负极材料首圈容量可逆/ 不可逆的特点着手,对基于非锂金属负极(如石墨、钛酸锂、二氧化钛、氧化锗、氧化铁、锡基、硅基等)的锂离子全电池的最新研究进行了论述。 |
其他语种文摘
|
Rechargeable lithium-ion batteries are vital for developing the electronic devices especially for the portable devices, as well as for the rapid development of plug-in hybrid-electric vehicle (PHEV) / electric vehicle (EV). And also, they are good choices for the deployment of power system (peak clipping and valley filling) and introducing the electric power into power system from the renewable energy sources. However, the disadvantages of low energy capacity are often reviled for the traditional lithium-ion batteries. In the past few decades, the researches of seeking substitutes for the traditional graphite anode material, including metal oxide, titanium-, tin- and silicon-based anode materials, have been widely investigated, and their positive effects on the high capacity and rate capability in the lithium half batteries have been demonstrated repeatedly. But to date, there is insufficient data to confirm these effects in lithium-ion full batteries, and very few kinds of anode materials were successfully utilized in commercialization. Thus, the questions of how the development of new anode-based lithium-ion full battery and whether it could be truly commercialized need to be well considered and discussed urgently, as many researchers concerned. At this stage, this review mainly discusses the development of lithium-ion full batteries starting from the irreversible capacity characteristics of anodes (graphite,Li_4Ti_5O_(12), TiO_2, GeO_x,FeO_x,Sn- and Sibased,etc.) in initial cycles. |
来源
|
化学进展
,2016,28(2/3):204-218 【核心库】
|
DOI
|
10.7536/PC150816
|
关键词
|
锂离子电池
;
新型负极材料
;
高容量
;
高倍率
;
全电池
|
地址
|
1.
防化研究院, 北京, 100191
2.
阿卜杜拉国王科技大学, 沙特阿拉伯
3.
苏州大学物理光电能源学部, 苏州, 215003
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1005-281X |
学科
|
化学;电工技术 |
文献收藏号
|
CSCD:5666254
|
参考文献 共
84
共5页
|
1.
Scrosati B.
Lithium Batteries: Advanced Technologies and Applications,2013:58
|
CSCD被引
1
次
|
|
|
|
2.
Tarascon J M.
Nature,2001,414:359
|
CSCD被引
1188
次
|
|
|
|
3.
Dunn B.
Science,2011,334:928
|
CSCD被引
856
次
|
|
|
|
4.
Winter M.
Chem. Rev,2004,104:4245
|
CSCD被引
288
次
|
|
|
|
5.
Armand M.
Nature,2008,451:652
|
CSCD被引
1130
次
|
|
|
|
6.
Ding F.
J. Mater. Chem,2012,22:12745
|
CSCD被引
10
次
|
|
|
|
7.
张临超.
化学进展,2011,23(2/3):276
|
CSCD被引
1
次
|
|
|
|
8.
Ren G.
Renew. Sustain. Energy Rev,2015,41:225
|
CSCD被引
11
次
|
|
|
|
9.
Son B.
J. Power Sources,2013,243:641
|
CSCD被引
1
次
|
|
|
|
10.
Loeffler N.
J. Power Sources,2014,248:915
|
CSCD被引
7
次
|
|
|
|
11.
Chong J.
J. Power Sources,2011,196:7707
|
CSCD被引
12
次
|
|
|
|
12.
刘欣.
化学进展,2013,25(8):1402
|
CSCD被引
1
次
|
|
|
|
13.
Pei L.
J. Power Sources,2014,253:412
|
CSCD被引
9
次
|
|
|
|
14.
Reimers J N.
J. Electrochem. Soc,2013,160:A1870
|
CSCD被引
1
次
|
|
|
|
15.
张玲玲. 锂离子电池高电压电解液.
化学进展,2014,26(4):553
|
CSCD被引
5
次
|
|
|
|
16.
尹成果.
化学进展,2013,25(1):55
|
CSCD被引
2
次
|
|
|
|
17.
Petibon R.
J. Power Sources,2014,251:187
|
CSCD被引
2
次
|
|
|
|
18.
Smith A J.
J. Electrochem. Soc,2013,160:A235
|
CSCD被引
1
次
|
|
|
|
19.
Arbizzani C.
J. Power Sources,2013,238:17
|
CSCD被引
2
次
|
|
|
|
20.
Ciosek H K.
J. Power Sources,2014,256:430
|
CSCD被引
1
次
|
|
|
|
|