青藏高原维管植物物种丰富度分布的情景模拟
Scenarios simulation of vascular plant species abundance distribution on Qinghai-Tibet Plateau
查看参考文献55篇
文摘
|
如何充分利用离散的观测数据,通过对维管植物物种分布丰富度及其与生境因子之间的相互作用和影响机理的定量分析,实现维管植物物种丰富度的空间分布及其情景模拟,是目前生物多样性研究前沿和核心内容之一。针对这一问题,在实现青藏高原37个国家自然保护区的维管植物物种数量收集和边界数据矢量化的基础上,分别进行维管植物物种数量与土地覆盖类型、环境因子和景观生态指数等三大类生境因子之间的相关关系的定量计算和对比分析,筛选和确定最佳相关分析方程,进而构建青藏高原维管植物物种丰富度的空间模拟分析模型。该模型中,维管植物物种丰富度与生境因子之间的复相关系数为0.94,模型验证结果表明,青藏高原的维管植物物种的平均丰富度为496.79种/100 km~2,其空间分布格局整体上呈东南向西北逐渐减少趋势;另外,除柴达木盆地荒漠区域以外,维管植物物种的空间分布随海拔的升高而减少。基于CMIP5 RCP 2.6、RCP 4.5和RCP 8.5三种气候情景模拟获得的青藏高原维管植物物种丰富度未来情景结果显示,在T0-T4(2010-2100)时段内,青藏高原维管植物物种丰富度整体将呈减少趋势。RCP 8.5情景下青藏高原维管植物物种丰富度的变化幅度最大,而RCP 2.6情景下的维管植物物种丰富度的变化幅度最小。研究表明,本文构建的模型能够对青藏高原维管植物物种丰富度的空间分布格局及其未来情景进行模拟分析,模拟结果可为青藏高原生物多样性及其对气候变化响应的综合评估和情景模拟提供方法和技术支持。 |
其他语种文摘
|
For quantitatively explaining the relationship between the vascular plant abundance and habitat factors in the Qinghai-Tibet Plateau, a spatial simulation method has been developed to simulate the distribution of vascular plant species abundance. In this paper, seven datasets covering 37 national nature reserves were used to screen the best correlation equation between the vascular plant abundance and habitat factors in the plateau. These datasets include imformation on the vascular plant type, land cover, mean annual biotemperature, average total annual precipitation, topographic relief, patch connectivity and ecological diversity index. The results show that the multiple correlation coefficient between vascular plant abundance and various of habitat factors is 0.94, the mean error validated with the vascular plant species data of 37 national nature reserves is 2.21 types/km~2, and the distribution of vascular plant species abundance gradually decreases from southeast to northwest, and reduces with increasing altitude except for the desert area of Qaidam Basin on the Qinghai-Tibet Plateau. Furthermore, the changes of vascular plant species abundance in the plateau during the periods from 1981 to 2010 (T0), from 2011-2040 (T2), from 2041 to 2070 (T3) and from 2071 to 2100 (T4) were simulated by combining the land cover change in China and the climatic scenarios of CMIP5 RCP2.6, RCP4.5 and RCP8.5. The results from T0 to T4 show that the vascular plant species abundance in the plateau would decrease in the future, the vascular plant species abundance had the biggest change ranges under RCP8.5 scenario and the smallest change ranges under RCP2.6 scenario. In short, dynamic change and interaction of habitat factors directly affect the spatial distribution of vascular plant species abundance on the Qinghai-Tibet Plateau. |
来源
|
地理学报
,2018,73(1):164-176 【核心库】
|
DOI
|
10.11821/dlxb201801014
|
关键词
|
青藏高原
;
维管植物物种丰富度
;
空间分析模型
;
情景分析
|
地址
|
1.
中国科学院地理科学与资源研究所, 资源与环境信息系统国家重点实验室, 北京, 100101
2.
中国科学院大学, 北京, 100039
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
植物学 |
基金
|
国家自然科学基金项目
;
国家重点研发计划项目
;
国家自然科学基金重点项目
;
中国科学院资源与环境信息系统国家重点实验室开放研究基金
|
文献收藏号
|
CSCD:6155256
|
参考文献 共
55
共3页
|
1.
Yue T X. Surface modelling of global terrestrial ecosystems under three climate change scenarios.
Ecological Modelling,2011,222(14):2342-2361
|
CSCD被引
29
次
|
|
|
|
2.
Godinez-Alvarez H. Comparison of three vegetation monitoring methods: their relative utility for ecological assessment and monitoring.
Ecological Indicators,2009,9(5):1001-1008
|
CSCD被引
12
次
|
|
|
|
3.
Pielke R A. Interactions between the atmosphere and terrestrial ecosystems: Influence on weather and climate.
Global Change Biology,1998,4(5):461-475
|
CSCD被引
33
次
|
|
|
|
4.
Gaston K J. Global patterns in biodiversity.
Nature,2000,405(6783):220-227
|
CSCD被引
309
次
|
|
|
|
5.
Foley J A. Global Consequences of Land Use.
Science,2005,309(5734):570-574
|
CSCD被引
712
次
|
|
|
|
6.
Zhou G S. Study on Chinese climate-vegetation relationship.
Acta Phytoecologica Sinica,1996,20(2):113-119
|
CSCD被引
3
次
|
|
|
|
7.
Gavilan R G. The use of climatic parameters and indices in vegetation distribution. A case study in the Spanish Sistema Central.
International Journal of Biometeorology,2005,50(2):111-120
|
CSCD被引
4
次
|
|
|
|
8.
Graham R W. Effects of global climate change on the patterns of terrestrial biological communities.
Trends in Ecology & Evolution,1990,5(9):289-292
|
CSCD被引
5
次
|
|
|
|
9.
Stephenson N L. Climatic control of vegetation distribution: The role of the water balance.
American Naturalist,1990,135(5):649-670
|
CSCD被引
27
次
|
|
|
|
10.
Rounsevell M D A. Land use and climate change in the UK.
Land Use Policy,2009,26(1):S160-S169
|
CSCD被引
10
次
|
|
|
|
11.
Turner B L. The emergence of land change science for global environmental change and sustainability.
Proceedings of the National Academy of Sciences,2007,104(52):20666-20671
|
CSCD被引
185
次
|
|
|
|
12.
Kalnay E. Impact of urbanization and land-use change on climate.
Nature,2003,423(6939):528-531
|
CSCD被引
255
次
|
|
|
|
13.
Moreira F. Mosaic-level inference of the impact of land cover changes in agricultural landscapes on biodiversity: A case-study with a threatened grassland bird.
PloS One,2012,7(6):38876
|
CSCD被引
2
次
|
|
|
|
14.
Sala O E. Global biodiversity scenarios for the year 2100.
Science,2000,287(5459):1770-1774
|
CSCD被引
311
次
|
|
|
|
15.
Zerger A. A method for predicting native vegetation condition at regional scales.
Landscape and Urban Planning,2009,91(2):65-77
|
CSCD被引
2
次
|
|
|
|
16.
Song M H. Simulated distribution of vegetation types in response to climate change on the Tibetan Plateau.
Journal of Vegetation Science,2005,16(3):341-350
|
CSCD被引
7
次
|
|
|
|
17.
沈泽昊. 基于植物地形关系的物种丰富度空间格局预测.
生态学报,2007,27(3):953-963
|
CSCD被引
25
次
|
|
|
|
18.
Zhang Y L. Assessment of effectiveness of nature reserves on the Tibetan Plateau based on net primary production and the large sample comparison method.
Journal of Geographical Sciences,2016,26(1):27-44
|
CSCD被引
14
次
|
|
|
|
19.
孙鸿烈. 青藏高原国家生态安全屏障保护与建设.
地理学报,2012,67(1):3-12
|
CSCD被引
370
次
|
|
|
|
20.
Myers N. Biodiversity hotspots for conservation priorities.
Nature,2000,403(6772):853-858
|
CSCD被引
744
次
|
|
|
|
|