帮助 关于我们

返回检索结果

基于LSTM预测信息的在线融资融券组合交易策略
Online margin trading strategy based on LSTM prediction information

查看参考文献38篇

文摘 随着国内融资融券市场日渐成熟和金融科技不断进步,构建智能化的融资融券交易策略成为量化金融领域的重要话题和关键挑战.该文利用长短期记忆网络(LSTM)预测信息构建专家策略,提出了集成专家意见的在线融资融券组合交易策略.首先,使用多个技术指标作为输入变量,通过LSTM神经网络模型预测股价的涨跌趋势.其次,考虑投资于单支股票的专家,根据LSTM模型的预测结果构建各专家的买卖策略.然后,提出了一种基于专家表现的权重优化模型,通过求解模型确定每个专家的权重.最后,为说明所构建策略的有效性,利用股票市场历史交易数据进行实证分析.结果表明所构建的策略能够获得高于基准策略的绩效表现,并在考虑交易费用的情况下仍能保持优越性.
其他语种文摘 With the growing maturity of the domestic margin market and the continuous advancement of financial technology, the development of intelligent margin trading strategies has emerged as a critical topic and challenge in the field of quantitative finance. This article employs long short-term memory (LSTM) networks to construct expert strategies based on predictive information and proposes an online margin portfolio trading strategy that integrates expert opinions. Firstly, multiple technical indicators are utilized as input variables to anticipate the trend of stock prices using the LSTM neural network model. Next, an expert specializing in investing in a single stock is considered, and buying or selling strategies for each expert are formulated based on the LSTM model's prediction results. Then, a weight optimization model based on expert performance is proposed to determine the weight of each expert by solving the model. Finally, to demonstrate the efficacy of the proposed strategy, historical trading data from stock markets is utilized for empirical analysis. The results demonstrate that the developed strategy is capable of achieving better performance than some benchmark strategies, even when taking transaction costs into consideration.
来源 系统工程理论与实践 ,2024,44(8):2493-2508 【核心库】
DOI 10.12011/SETP2022-0819
关键词 机器学习 ; 融资融券 ; 在线投资组合 ; LSTM神经网络
地址

广东工业大学管理学院, 广州, 510520

语种 中文
文献类型 研究性论文
ISSN 1000-6788
学科 社会科学总论
基金 国家自然科学基金面上项目 ;  国家教育部人文社会科学研究项目 ;  广东省基础与应用基础研究基金 ;  广东省哲学社会科学规划项目
文献收藏号 CSCD:7790566

参考文献 共 38 共2页

1.  Markowitz H. Portfolio selection. Journal of Finance,1952,7(1):77-91 CSCD被引 777    
2.  于孝建. 基于滚动经济回撤约束和下半方差的最优投资组合策略. 系统工程理论与实践,2018,38(3):545-555 CSCD被引 7    
3.  Dai Z F. Some new efficient mean-variance portfolio selection models. International Journal of Finance & Economics,2021,7:1-13 CSCD被引 1    
4.  Cover T M. Universal portfolios. Mathematical Finance,1991,1(1):1-29 CSCD被引 34    
5.  Helmbold D P. On-line portfolio selection using multiplicative updates. Mathematical Finance,1998,8(4):325-347 CSCD被引 23    
6.  张永. 集成有限个专家意见的在线投资组合策略. 系统工程理论与实践,2015,35(1):57-66 CSCD被引 15    
7.  Hazan E. An online portfolio selection algorithm with regret logarithmic in price variation. Mathematical Finance,2015,25(2):288-310 CSCD被引 6    
8.  李斌. 基于次梯度投影的泛投资组合选择策略. 管理科学学报,2018,21(3):94-104 CSCD被引 9    
9.  彭子衿. 基于股价预测的泛证券投资组合策略. 中国管理科学,2018,26(9):1-10 CSCD被引 6    
10.  Li B. Moving average reversion strategy for on-line portfolio selection. Artificial Intelligence,2015,222:104-123 CSCD被引 15    
11.  Huang D. Robust median reversion strategy for online portfolio selection. IEEE Transactions on Knowledge and Data Engineering,2016,28(9):2480-2493 CSCD被引 8    
12.  Guan H. A local adaptive learning system for online portfolio selection. Knowledge-Based Systems,2019,186:104958 CSCD被引 6    
13.  Lai Z R. Reweighted price relative tracking system for automatic portfolio optimization. IEEE Transactions on Systems, Man, and Cybernetics: Systems,2020,50(11):4349-4361 CSCD被引 2    
14.  Guo S N. Adaptive online portfolio selection with transaction costs. European Journal of Operational Research,2021,295(3):1074-1086 CSCD被引 2    
15.  林虹. 考虑组合预测股价的泛证券投资组合选择策略. 管理工程学报,2023,37(5):130-141 CSCD被引 1    
16.  Ozbayoglu A M. Deep learning for financial applications: A survey. Applied Soft Computing,2020,93:106384 CSCD被引 5    
17.  Fischer T. Deep learning with long short-term memory networks for financial market predictions. European Journal of Operational Research,2018,270(2):654-669 CSCD被引 42    
18.  Chen M Y. Modeling public mood and emotion: Stock market trend prediction with anticipatory computing approach. Computers in Human Behavior,2019,101:402-408 CSCD被引 1    
19.  Long W. Deep learning-based feature engineering for stock price movement prediction. Knowledge-Based Systems,2019,164:163-173 CSCD被引 6    
20.  Lu W. A CNN-BiLSTM-AM method for stock price prediction. Neural Computing and Applications,2021,33(10):4741-4753 CSCD被引 10    
引证文献 2

1 任晓萍 采用门控循环单元与深度进化策略的股票指数量化模型 西安交通大学学报,2025,59(2):146-155
CSCD被引 0 次

2 周佳妮 融合通道与多头注意力的股价趋势预测模型 计算机工程与应用,2025,61(8):324-338
CSCD被引 0 次

显示所有2篇文献

论文科学数据集
PlumX Metrics
相关文献

 作者相关
 关键词相关
 参考文献相关

版权所有 ©2008 中国科学院文献情报中心 制作维护:中国科学院文献情报中心
地址:北京中关村北四环西路33号 邮政编码:100190 联系电话:(010)82627496 E-mail:cscd@mail.las.ac.cn 京ICP备05002861号-4 | 京公网安备11010802043238号