非晶态固体力学
Mechanics of amorphous solids
查看参考文献130篇
文摘
|
经典的固体变形和断裂理论建立在连续介质尺度,结合位错、晶界、解理等概念可成功应用于各类晶态固体.然而,该经典路径对于拓扑长程无序的各类非晶态固体面临极大的概念和理论挑战.根本原因是,传统晶体学概念在非晶态无序结构中无法定义,导致以此为基础建立的固体力学理论全部失效.本文针对非晶合金这类典型非晶态固体及其对应的原子或胶体模拟体系,介绍和评述与力学相关的研究进展,包括塑性载体、塑性本构理论、蠕变与应力松弛、剪切带、断裂失效.最后,对非晶态固体力学研究的发展现状和未来趋势进行简要总结. |
其他语种文摘
|
Understanding amorphous solids and relevant properties is the deepest and most fascinating scientific problem in our time. Classical theories of solid mechanics are built on the continuum scale, and they can successfully describe the deformation and fracture of various crystalline solids by taking into account the concepts such as dislocations, grain boundaries, and cleavage. However, this classical route faces great conceptual and theoretical challenges when applied to amorphous solids lacking long-range period order. The fundamental reason is that the traditional crystallographic concepts are not defined in topologically disordered structures, which leads to the breakdown of solid mechanics theories established on this basis. In this paper, we take amorphous alloys and their atomic or colloidal simulation counterparts as model systems, and review the research progress of the five representative aspects related to their mechanical behaviors or properties, including plastic carriers, plastic constitutive theories, creep and stress relaxation, shear banding, and fracture failure. It is noted that these relevant studies are open and still under developing, and some views, methods, models, etc., remain much controversial, far away from forming a generally accepted theoretical system. Meanwhile, the long-term study on the mechanics of amorphous solids in many fields seems to be on the eve of a major breakthrough. We believe that researchers in the field of mechanics should take this opportunity to focus on the following major scientific issues or key technologies (but not limited to): (1) High spatiotemporal resolution technology to probe amorphous plastic carriers based on advanced electron microscopes, light sources, etc.; (2) the spatiotemporal relationship between vibration and rearrangement of disordered systems; (3) elastic fluctuations and correlations of amorphous solids; (4) the trans-scale amorphous constitutive theory considering multiple processes and out-of-equilibrium; (5) extreme mechanical responses of amorphous solids, including dynamic shock, laser irradiation, long-duration rheology, ultra-high cycle fatigue, etc.; (6) material strengthen-toughening technology by tailing topological disorder; (7) physical aging, structural rejuvenation, and memory effects; (8) highefficiency damage and protection technologies based on amorphous materials. These pieces of research will enrich and develop the theoretical systems and technological innovation of solid mechanics, and will also contribute to the fields of materials, physics, etc., promoting the interdisciplinary harmonization and development. |
来源
|
科学通报
,2022,67(22):2578-2593 【核心库】
|
DOI
|
10.1360/TB-2022-0181
|
关键词
|
非晶态固体
;
剪切转变
;
自由体积
;
本构理论
;
剪切带与断裂
|
地址
|
1.
中国科学院力学研究所, 非线性力学国家重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
0023-074X |
学科
|
晶体学 |
基金
|
国家自然科学基金国家杰出青年科学基金
;
国家自然科学基金基础科学中心项目
;
国家自然科学基金重大项目
;
国家自然科学基金面上项目
|
文献收藏号
|
CSCD:7311264
|
参考文献 共
130
共7页
|
1.
Klement W. Non-crystalline structure in solidified gold-silicon alloys.
Nature,1960,187:869-870
|
CSCD被引
247
次
|
|
|
|
2.
Jenniskens P. Structural transitions in amorphous water ice and astrophysical implications.
Science,1994,265:753-756
|
CSCD被引
3
次
|
|
|
|
3.
Stillinger F H. A topographic view of supercooled liquids and glass formation.
Science,1995,267:1935-1939
|
CSCD被引
35
次
|
|
|
|
4.
Johari G P. Viscous liquids and the glass transition. II. Secondary relaxations in glasses of rigid molecules.
J Chem Phys,1970,53:2372-2388
|
CSCD被引
28
次
|
|
|
|
5.
Lunkenheimer P. Glassy dynamics.
Contemp Phys,2000,41:15-36
|
CSCD被引
30
次
|
|
|
|
6.
Yang J. Structural parameter of orientational order to predict the boson vibrational anomaly in glasses.
Phys Rev Lett,2019,122:015501
|
CSCD被引
13
次
|
|
|
|
7.
Yang Q. Shadow glass transition as a thermodynamic signature of β relaxation in hyper-quenched metallic glasses.
Natl Sci Rev,2020,7:1896-1905
|
CSCD被引
13
次
|
|
|
|
8.
Schuh C A. Mechanical behavior of amorphous alloys.
Acta Mater,2007,55:4067-4109
|
CSCD被引
240
次
|
|
|
|
9.
Falk M L. The flow of glass.
Science,2007,318:1880-1881
|
CSCD被引
2
次
|
|
|
|
10.
Furukawa A. Inhomogeneous flow and fracture of glassy materials.
Nat Mater,2009,8:601-609
|
CSCD被引
8
次
|
|
|
|
11.
Dai L H. Shear banding in bulk metallic glasses.
Adiabatic Shear Localization. 2nd ed,2012
|
CSCD被引
2
次
|
|
|
|
12.
Greer A L. Shear bands in metallic glasses.
Mater Sci Eng-R-Rep,2013,74:71-132
|
CSCD被引
104
次
|
|
|
|
13.
Nicolas A. Deformation and flow of amorphous solids: Insights from elastoplastic models.
Rev Mod Phys,2018,90:045006
|
CSCD被引
6
次
|
|
|
|
14.
Dong J L. Impact resistance of single-layer metallic glass nanofilms to high-velocity micro-particle penetration.
Extreme Mech Lett,2021,44:101258
|
CSCD被引
7
次
|
|
|
|
15.
唐晓畅. 金属玻璃动态拉伸断裂(层裂)中的损伤演化行为.
科学通报,2021,66:1847-1860
|
CSCD被引
4
次
|
|
|
|
16.
Argon A S. Plastic deformation in metallic glasses.
Acta Metall,1979,27:47-58
|
CSCD被引
153
次
|
|
|
|
17.
Falk M L. Dynamics of viscoplastic deformation in amorphous solids.
Phys Rev E,1998,57:7192-7205
|
CSCD被引
65
次
|
|
|
|
18.
Lu Y Z. Dilatancy of shear transformations in a colloidal glass.
Phys Rev Appl,2018,9:014023
|
CSCD被引
7
次
|
|
|
|
19.
Peng H L. Structural signature of plastic deformation in metallic glasses.
Phys Rev Lett,2011,106:135503
|
CSCD被引
40
次
|
|
|
|
20.
Yang X. Structures of local rearrangements in soft colloidal glasses.
Phys Rev Lett,2016,116:238003
|
CSCD被引
8
次
|
|
|
|
|