生态保护工程和气候变化对长江源区植被变化的影响量化
Effects of ecological conservation projects and climate variations on vegetation changes in the source region of the Yangtze River
查看参考文献29篇
文摘
|
分析长江源区生态保护工程和气候变化对植被变化的影响程度,对于长江源区生态工程的生态效益评估,以及区域植被适应性生态管理政策的制定具有重要意义。因此,本文基于1982-2015年的归一化植被指数数据(Normalized Difference Vegetation Index, NDVI)和气象数据,分析长江源区植被NDVI的时空变化规律,构建预测植被NDVI对气候因子响应的人工神经网络模型,在此基础上,在年和季节尺度上量化气候变化和生态保护工程对长江源区植被变化的影响程度。结果表明:①在长江源区气候条件变化和生态保护工程影响下,长江源区植被退化得到遏制,植被生长呈好转趋势;②海拔相对较低的通天河附近植被NDVI增加幅度较大,高海拔的沱沱河和当曲流域的植被NDVI增加幅度相对较小;③长江源区植被NDVI对气候因子响应存在1~2月的滞后性。构建的人工神经网络模型的拟合优度参数人工神经网模型具有较高的预测精度,可以用来模拟植被NDVI对气候因子的响应;④年尺度的植被NDVI增加受到生态保护工程的影响程度(58.5%)大于气候变化的影响程度(41.5%)。生长季生态保护工程对NDVI的影响程度(63.3%)大于气候变化对NDVI的影响程度(36.7%),而非生长季气候变化是影响长江源区植被生长的关键要素(52.8%)。研究结果有助于为长江源区植被生态系统恢复、管理和利用战略的科学制定提供决策依据。 |
其他语种文摘
|
Quantitative research on the effects of ecological conservation projects and climate variations on vegetation changes is vital to the ecological benefit evaluation of ecological conservation projects, and has important implications for sustainable ecological rehabilitation management strategies in the source region of the Yangtze River. Based on the normalized difference vegetation index (NDVI) data and meteorological data during 1982-2015, this paper examines the temporal and spatial variations of NDVI; constructs back propagation artificial neural network (BPANN) model to simulate the responses of NDVI to climate factors; and quantifies the effects of ecological conservation projects and climate variations on vegetation changes at the annual and seasonal scales in the source region of the Yangtze River. The results indicate that: (1) Because of the effects of ecological conservation projects and climate variations, vegetation degradation curbed in the source region of the Yangtze River. (2) NDVI increased greatly near the Tongtian River located at relatively low altitudes. Minor increases in NDVI were observed near the Tuotuo and Dangqu rivers located at relatively high altitudes. (3) A time lag (about 1-2 months) existed between NDVI and major climate factors in the source region of the Yangtze River. The goodness of fit of the BPANN model shows that the simulation accuracy is relatively high. The model can be used to simulate the responses of NDVI to climate variations. (4) Ecological conservation projects exerted a slightly greater impact on NDVI changes than they did on climate variations at the yearly time scale (58.5% and 41.5%, respectively). During growing season, ecological conservation projects also exerted a slightly greater impact on NDVI changes than they did on climate variations (63.3% and 36.7%, respectively). During non-growth season, climate variations are the key factor affecting vegetation growth in the source region of the Yangtze River (52.8%). The research results provide a basis for scientific decision- making about the vegetation ecosystem rehabilitation, management and utilization strategies in the source region of the Yangtze River. |
来源
|
地理学报
,2019,74(1):76-86 【核心库】
|
DOI
|
10.11821/dlxb201901006
|
关键词
|
植被
;
气候变化
;
生态保护工程
;
归一化植被指数
;
人工神经网络
;
长江源区
|
地址
|
1.
长江科学院流域水环境研究所, 武汉, 430010
2.
流域水资源与生态环境科学湖北省重点实验室, 流域水资源与生态环境科学湖北省重点实验室, 武汉, 430010
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
大气科学(气象学);环境保护管理 |
基金
|
国家自然科学基金项目
;
湖北省自然科学基金
;
中央级公益性科研院所基本科研业务专项基金
|
文献收藏号
|
CSCD:6424951
|
参考文献 共
29
共2页
|
1.
Wu D H. Time-lag effects of global vegetation responses to climate change.
Global Change Biology,2015,21(9):3520-3531
|
CSCD被引
44
次
|
|
|
|
2.
Tietjen B. Climate change-induced vegetation shifts lead to more ecological droughts despite projected rainfall increases in many global temperate drylands.
Global Change Biology,2017,23(7):2743-2754
|
CSCD被引
10
次
|
|
|
|
3.
Chen B X. The impact of climate change and anthropogenic activities on alpine grassland over the Qinghai-Tibet Plateau.
Agricultural and Forest Meteorology,2014,189:11-18
|
CSCD被引
93
次
|
|
|
|
4.
孙庆龄. 三江源植被净初级生产力估算研究进展.
地理学报,2016,71(9):1596-1612
|
CSCD被引
38
次
|
|
|
|
5.
Jiang L L. Vegetation dynamics and responses to climate change and human activities in Central Asia.
Science of the Total Environment,2017,599:967-980
|
CSCD被引
56
次
|
|
|
|
6.
张镱锂. 新世纪以来青藏高原绿度变化及动因.
自然杂志,2017,39(3):173-178
|
CSCD被引
15
次
|
|
|
|
7.
杜际增. 近45年长江黄河源区高寒草地退化特征及成因分析.
草业学报,2015,24(6):5-15
|
CSCD被引
46
次
|
|
|
|
8.
杨桂山. 长江经济带绿色生态廊道建设研究.
地理科学进展,2015,34(11):1356-1367
|
CSCD被引
44
次
|
|
|
|
9.
邵全琴. 基于目标的三江源生态保护和建设一期工程生态成效评估及政策建议.
中国科学院院刊,2017,32(1):35-44
|
CSCD被引
31
次
|
|
|
|
10.
陈婷. 近22年长江源区植被覆盖变化规律与成因.
地学前缘,2008,15(6):323-331
|
CSCD被引
15
次
|
|
|
|
11.
姚玉璧. 1959-2008长江源被净初级生产力对气候变化的响应.
冰川冻土,2011,33(6):1286-1293
|
CSCD被引
16
次
|
|
|
|
12.
刘璐璐. 三江源生态工程实施前后长江源区宏观生态状况变化分析.
地球信息科学学报,2016,18(8):1069-1076
|
CSCD被引
3
次
|
|
|
|
13.
李辉霞. 基于NDVI的三江源地区植被生长对气候变化和人类活动的响应研究.
生态学报,2011,31(19):5495-5504
|
CSCD被引
199
次
|
|
|
|
14.
刘光生. 长江源区沼泽草甸多年冻土活动层土壤水分对模拟增温的响应.
冰川冻土,2015,37(3):668-675
|
CSCD被引
12
次
|
|
|
|
15.
Cai H Y. Human-induced grassland degradation/restoration in the Central Tibetan Plateau:The effects of ecological protection and restoration projects.
Ecological Engineering,2015,83:112-119
|
CSCD被引
25
次
|
|
|
|
16.
Julien Y. The Yearly Land Cover Dynamics (YLCD) method:An analysis of global vegetation from NDVI and LST parameters.
Remote Sensing of Environment,2009,113(2):329-334
|
CSCD被引
8
次
|
|
|
|
17.
Zhang G L. Green-up dates in the Tibetan Plateau have continuously advanced from 1982 to 2011.
Proceedings of the National Academy of Sciences of the United States of America,2013,110(11):4309-4314
|
CSCD被引
60
次
|
|
|
|
18.
Wang K C. An improved method for estimating global evapotranspiration based on satellite determination of surface net radiation, vegetation index, temperature, and soil moisture.
Journal of Hydrometeorology,2008,9:712-727
|
CSCD被引
13
次
|
|
|
|
19.
祁威. 1971-2009年珠穆朗玛峰地区尼泊尔境内气候变化.
地理学报,2013,68(1):82-94
|
CSCD被引
14
次
|
|
|
|
20.
高歌. 1961-2010年中国十大流域水分盈亏量时空变化特征.
地理学报,2015,70(3):380-391
|
CSCD被引
18
次
|
|
|
|
|