爆炸成型弹丸侵彻钢靶的后效破片云实验研究
Experimental Research on Fragments after Explosively-formed Projectile Penetrating into Steel Target
查看参考文献12篇
文摘
|
为研究爆炸成型弹丸(EFP)穿透钢靶后的后效威力,设计了长杆形EFP装置及对45号钢靶板的侵彻实验。采用X光摄影方法观测EFP穿过靶板后的破片云形态及飞散特性;通过测量靶板后一定距离处验证板上的穿孔,得到靶板后破片数量。从拍摄的脉冲X光照片可以看出:EFP穿透钢靶后形成的破片云形状是截椭圆形,飞散角约50°.从验证板上的穿孔可以看出:靶后破片可穿透10mm铝板,破片穿孔分布相对随机,穿孔直径近似呈正态分布特征,破片飞散角与X光观测结果一致;随着靶板厚度增大,破片飞散角均为50°,但靶后破片数量呈先增大、后减小的趋势,即存在靶后破片数量最大化的靶板厚度。从回收到的破片可以看出:靶后碎片由EFP和钢靶碎片共同构成。 |
其他语种文摘
|
A series experiments that the explosively-formed projectiles (EFPs) penetrate 10-40mm-thick mild carbon steel (45# steel) were designed to investigate the effect of behind armor debris(BAD) after EFP penetrating into steel target.The morphology and scattering characteristics of BAD are observed by pulsed X-ray photography,and the number and damage ability of BAD are obtained by measuring the perforation on witness target.It can be seen from the pulsed X-ray photographs that the shape of BAD presented as fragments is of partial ellipse with the scattering angle of about 50°.The perforation on witness plate shows that BAD could penetrate 10mm-thick aluminum plate,the perforation distribution is relatively random,and the diameter of hole on witness plate approximately conform to normal distribution.The scattering angle varies little with the increase in the target thickness,while the number of BAD increases first and then decreases,namely there is a target thickness that maximizes the number of BAD.It can also be seen from recovered fragments that EFP and steel target debris together constitute the BAD. |
来源
|
兵工学报
,2018,39(7):1284-1290 【核心库】
|
DOI
|
10.3969/j.issn.1000-1093.2018.07.005
|
关键词
|
爆炸成型弹丸
;
钢靶
;
验证板
;
靶后破片
|
地址
|
北京理工大学, 爆炸科学与技术国家重点实验室, 北京, 100081
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-1093 |
学科
|
武器工业 |
文献收藏号
|
CSCD:6301423
|
参考文献 共
12
共1页
|
1.
隋树元.
终点效应学,2000:233-237
|
CSCD被引
3
次
|
|
|
|
2.
林加剑.
EFP成型及其终点效应研究,2009
|
CSCD被引
13
次
|
|
|
|
3.
罗健. EFP战斗部毁伤效应及毁伤效应评估方法研究.
第十四届战斗部与毁伤技术学术交流会,2015:872-877
|
CSCD被引
1
次
|
|
|
|
4.
Dalzell M W. Modelling behind-armor debris formed by the perforation of an EFP through a steel target.
Proceedings of the 20th International Symposium on Ballistics,2002:23-27
|
CSCD被引
3
次
|
|
|
|
5.
Kim H S. A model for behind armor debris from EFP impact.
Proceedings of the 26th International Symposium on Ballistics,2011:1410-1419
|
CSCD被引
2
次
|
|
|
|
6.
叶严. EFP垂直侵彻靶后破片云描述模型.
工程爆破,2016,22(6):28-31
|
CSCD被引
4
次
|
|
|
|
7.
Wang Y Y. Effect of add-on explosive reactive armor on EFP penetration.
Proceedings of the 29th International Symposium on Ballistics,2016:2395-2406
|
CSCD被引
5
次
|
|
|
|
8.
姚志敏. 聚能装药垂直侵彻靶后破片的散布规律.
工程爆破,2015,21(5):53-57
|
CSCD被引
2
次
|
|
|
|
9.
Grady D E. Local inertial effects in dynamic fragmentation.
Journal of Applied Physics,1982,53(1):322-325
|
CSCD被引
47
次
|
|
|
|
10.
张先锋. EFP对有限厚靶板侵彻过程及后效研究.
爆炸与冲击,2006,26(4):323-327
|
CSCD被引
11
次
|
|
|
|
11.
段占强. 高速冲击下钢板的微观组织及绝热剪切带.
金属学报,2003,39(5):486-497
|
CSCD被引
7
次
|
|
|
|
12.
Arnold W. Behind armor debris investigation.
International Journal of Impact Engineering,2003,29:95-104
|
CSCD被引
3
次
|
|
|
|
|