氨燃料吸气式变循环发动机性能分析1)
ANALYSIS OF PERFORMANCE OF AMMONIA AIR-BREATHING VARIABLE CYCLE ENGINE1)
查看参考文献39篇
文摘
|
针对飞行马赫数0 ~ 10的宽域飞行器对吸气式动力的需求,提出了一种以氨为燃料和冷却剂的宽域吸气式变循环发动机,其工作模态可有3种:涡轮模态、预冷模态和冲压模态.首先通过对该发动机各模态热力循环过程进行建模,计算得到发动机比推力、比冲和总效率等性能参数,初步验证其在马赫数0 ~ 10范围内工作的可行性;然后,选取甲烷和正癸烷为低温低密度和煤油类碳氢燃料的典型代表,对比各模态下氨与碳氢燃料发动机的性能差异.结果表明,由于氨突出的当量总热沉和当量热值,飞行马赫数3 ~ 5的预冷模态发动机性能各指标均优于碳氢燃料.在涡轮模态和冲压模态下,氨燃料发动机比冲较低,但比推力和总效率优于碳氢燃料;最后,对比分析各类燃料马赫数0 ~ 10宽域工作特性,发现氨预冷可以显著提升发动机比推力,特别在高马赫数范围,再生冷却通道内氨可发生裂解反应大量吸热并分解为氢气和氮气,会进一步提升发动机比推力和比冲,且不会堵塞冷却通道,因此可胜任飞行马赫数0 ~ 10的宽范围飞行需求.而煤油类碳氢燃料受限于比推力低和裂解结焦问题,最高工作马赫数难以超过8.本文提出的氨燃料吸气式变循环发动机,当量冷却能力强且比推力高,适合用于二级入轨飞行器的一级动力、高马赫数宽域吸气式飞行以及未来高超声速民航等场景. |
其他语种文摘
|
In response to the demand of air-breathing power for wide-range aircraft with flight Mach number 0 ~ 10, a wide-range air-breathing variable cycle engine using ammonia as the fuel and coolant is proposed in the research. There are three working modes: turbine mode, pre-cooling mode and ramjet mode. Firstly, the feasibility of the engine at Mach 0 ~ 10 was preliminarily verified by modeling the thermodynamic cycle process of each mode and calculating the performance parameters such as specific thrust, specific impulse and total efficiency. Then, methane and decane were selected as the typical representatives of low temperature and low density and kerosene hydrocarbon fuels, and the performance of the engines fueled by ammonia and hydrocarbon fuels in turbine mode, pre-cooling mode and ramjet mode were comprehensively compared. The results show that due to the outstanding equivalent total heat sink and equivalent heat value of ammonia, the performance of it in the pre-cooling mode at Mach 3 ~ 5 is better than that of hydrocarbon fuels. In turbine mode and ramjet mode, the specific impulse of the engine using ammonia as the fuel is lower, but the specific thrust and total efficiency are better than that of hydrocarbon fuels. In the end, the operating characteristics of various fuels at Mach 0 ~ 10 were compared and analyzed, it shows that ammonia precooling can significantly improve engine performance in terms of wide-range operating characteristics, especially in the high Mach number, when ammonia is thermally decomposed into hydrogen and nitrogen in the regenerative cooling channel on the combustion chamber wall, the specific thrust and specific impulse of the engine will be further improved. And using ammonia as the coolant will not block the cooling channel, so it can meet the wide-range flight requirements of Mach 0~10. Kerosene hydrocarbon fuel is limited by low specific thrust and pyrolysis coking problems, and generally the maximum working Mach number does not exceed 8. In conclusion, the air-breathing variable cycle engine using ammonia as the fuel proposed in this paper has excellent equivalent cooling capacity and specific thrust index, and is suitable for applications such as the primary power of the two-stage orbiting vehicle, high Mach number air-breathing flight and future hypersonic civil aviation. |
来源
|
力学学报
,2022,54(11):3223-3237 【核心库】
|
DOI
|
10.6052/0459-1879-22-295
|
关键词
|
氨
;
涡轮模态
;
预冷模态
;
冲压模态
;
当量总热沉
;
当量热值
|
地址
|
1.
中国科学院力学研究所, 高温气体动力学国家重点实验室, 北京, 100190
2.
中国科学院大学工程科学学院, 北京, 100049
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0459-1879 |
学科
|
航空 |
基金
|
中国科学院战略性先导科技专项
|
文献收藏号
|
CSCD:7349447
|
参考文献 共
39
共2页
|
1.
Sato T. Development study of precooled cycle hypersonic turbojet engine for flight demonstration.
Acta Astronautica,2007,61(6):367-375
|
CSCD被引
6
次
|
|
|
|
2.
魏毅寅. 组合动力空天飞行若干科技关键问题.
空天技术,2022,52(1):1-12
|
CSCD被引
12
次
|
|
|
|
3.
邹正平. 高超声速强预冷航空发动机技术研究进展.
航空发动机,2021,47(4):8-21
|
CSCD被引
8
次
|
|
|
|
4.
朱大明. 高超声速涡轮/冲压组合发动机方案.
北京航空航天大学学报,2006,32(3):263-266
|
CSCD被引
10
次
|
|
|
|
5.
Taguchi H. Performance evaluation of hypersonic pre-cooled turbojet engine.
20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference,2015
|
CSCD被引
1
次
|
|
|
|
6.
Taguchi H. Mach 4 performance evaluation of hypersonic pre-cooled turbojet engine.
22nd AIAA International Space Planes and Hypersonics Systems and Technologies Conference,2018
|
CSCD被引
1
次
|
|
|
|
7.
姚尧. 液氢预冷吸气式发动机建模与循环特性分析.
推进技术,2022,43(4):26-36
|
CSCD被引
2
次
|
|
|
|
8.
郑日恒. 涡8轮基组合循环发动机推力陷阱问题解决方案.
火箭推进,2021,47(6):21-32
|
CSCD被引
4
次
|
|
|
|
9.
Bulman M J. Combined cycle propulsion: aerojet innovations for practical hypersonic vehicles.
17th AIAA International Space Planes and Hypersonic Systems and Technologies Conference,2011
|
CSCD被引
2
次
|
|
|
|
10.
Wang Z G. Overview of the key technologies of combined cycle engine precooling systems and the advanced applications of micro-channel heat transfer.
Aerospace Science & Technology,2014,39:31-39
|
CSCD被引
24
次
|
|
|
|
11.
Carter P. Mass injection and pre-compressor cooling engines analyses.
38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit,2002
|
CSCD被引
2
次
|
|
|
|
12.
林阿强.
航空涡轮发动机射流预冷流动及传热性能研究.[博士论文],2020
|
CSCD被引
1
次
|
|
|
|
13.
Mehta U. Water injection pre-compressor cooling assist space access.
The Aeronautical Journal,2015,119(1212):145-171
|
CSCD被引
4
次
|
|
|
|
14.
林阿强. 航空涡轮发动机射流预冷技术研究.
推进技术,2020,41(4):721-728
|
CSCD被引
9
次
|
|
|
|
15.
Sato T. Development study on atrex engine.
Acta Astronautica,2000,47(11):799-808
|
CSCD被引
14
次
|
|
|
|
16.
Webber H. The sensitivity of precooled airbreathing engine performance to heat exchanger design parameters.
Journal of the British Interplanetary Society,2007,60(5):188-196
|
CSCD被引
9
次
|
|
|
|
17.
Mosesp. X-43 C Plans and status.
12th AIAA International Space Planes and Hypersonic Systems and Technologies Conference,2003
|
CSCD被引
1
次
|
|
|
|
18.
Kobayashi H. Science and technology of ammonia combustion.
Proceedings of the Combustion Institute,2019,37(1):109-133
|
CSCD被引
60
次
|
|
|
|
19.
Karabeyoglu A. Fuel conditioning system for ammonia fired power plants.
9th Annual NH_3 Fuel Association Conference,2012:38-39
|
CSCD被引
1
次
|
|
|
|
20.
刘爱虢. 液化天然气作为航空燃料的发展趋势及特点分析.
航空动力学报,2016,6:1281-1288
|
CSCD被引
1
次
|
|
|
|
|