杂散光抑制与评估技术发展与展望(特邀)
Development and Prospect of Stray Light Suppression and Evaluation Technology(Invited)
查看参考文献188篇
文摘
|
随着空间光学技术的快速发展以及光电探测器件性能的不断提升,高分辨率、多光谱、低探测阈值的遥感系统在航空、航天等领域的应用越来越广泛,对光电载荷的杂光抑制能力与评价指标逐渐严苛,杂散光抑制技术和仿真分析已成为不可缺少的环节之一。尽管杂散光的抑制与评估技术开展较早,但仍然需要系统性方法体系引领该技术的发展,以改变当前分散化、碎片化的研究现状。因此,需要建立一体化的杂散光抑制与评估方法体系,在杂散光抑制方案制订、抑制模型表面特性测量与建模、杂散光抑制效果仿真、杂散光测试及评估等四个关键技术模块进行深入研究。本文给出了一套整体技术路线,为更好推进杂散光抑制与评估技术的发展和应用提供思路。 |
其他语种文摘
|
With the rapid development of space optical technology and the continuous improvement of the performance of photoelectric detection devices, remote sensing systems with high resolution, multispectral,and low detection threshold are more and more widely used in aviation,aerospace and other fields. And the capabilities and evaluation indicators for the stray light suppression of electric-optic load are gradually becoming stricter. The stray light suppression technology and simulation analysis has become one of the indispensable links. Although the domestic stray light suppression and evaluation technology have developed earlier,a systematic method is still needed to lead the development of this technology to change the current research status of decentralization and fragmentation. Therefore,it is necessary to establish an integrated stray light suppression and evaluation method system,and conduct in-depth research in four key technical modules,including the formulation of stray light suppression scheme,suppression model surface characteristic measurement and modeling,stray light suppression effect simulation,and stray light test and evaluation and so on. Based on the theory of stray light radiation transfer,we give the corresponding suppression methods according to the stray light inside and outside the field of view,and the internal thermal radiation stray light. But the actual stray light sources are complex and in various forms,often requiring various suppression methods together,such as selecting the configuration of the optical system, setting the baffle and vanes,adding the stops,coating the optical surface,and blackening the surface of the structural parts. In addition,in some specific cases,filtering method,adjacent frame subtraction method, polarization method,numerical aperture method,and image correction method can also be used to suppress stray light. Opto-mechanical systems are generally composed of various surfaces with different materials and properties and they have different characteristics such as reflection, scattering, and absorption. Therefore,studying the surface characteristics of the system is the basis for stray light analysis. The measurement of surface properties can be used as a preliminary method to obtain the surface information of the material. On this basis,modeling calculations can be performed to make up for the deficiency that the experimental measurement cannot obtain any direction of incidence and observation. It can be widely promoted and applied in engineering. Computer simulation is an important means of stray light analysis, which can solve the problems of too cumbersome and high testing costs for stray light experiments in optical systems with high suppression ratios,and improve the efficiency of stray light analysis. The Monte Carlo method has been widely used in a variety of commercial software due to its high accuracy and computational simplicity.With the rapid development of computer technology and the emergence of new algorithms,the number,speed,and accuracy of ray tracing will be improved. It can more accurately simulate the influence of stray light on the whole system. Stray light measurement is the key to the final determination and verification of the system's true stray light suppression capability. The measurement methods of stray light have formed two evaluation methods. |
来源
|
光子学报
,2022,51(7):0751406 【核心库】
|
DOI
|
10.3788/gzxb20225107.0751406
|
关键词
|
杂散光
;
鬼像
;
抑制技术
;
双向反射分布函数
;
点源透过率
|
地址
|
1.
中国科学院西安光学精密机械研究所, 西安, 710119
2.
中国科学院大学, 北京, 100049
3.
中国科学院空间精密测量技术重点实验室, 中国科学院空间精密测量技术重点实验室, 西安, 710119
4.
中国科学院青年创新促进会, 北京, 100037
5.
北京航空航天大学, 北京, 100191
|
语种
|
中文 |
文献类型
|
综述型 |
ISSN
|
1004-4213 |
学科
|
机械、仪表工业 |
基金
|
国家重点研发计划
|
文献收藏号
|
CSCD:7281390
|
参考文献 共
188
共10页
|
1.
中国机械工业联合会.
GB/T 10988.2009,光学系统杂(散)光测量方法
|
CSCD被引
1
次
|
|
|
|
2.
Shao X. Characterization and monitoring of GOES-16 ABI stray light and comparison with Himawari-8 AHI and GOES-17 ABI.
Journal of Applied Remote Sensing,2021,15(1):017503
|
CSCD被引
1
次
|
|
|
|
3.
Lee S. Soumi NPP VIIRS day/night band stray light characterization and correction using calibration view data.
Remote Sensing,2016,8(2):138
|
CSCD被引
6
次
|
|
|
|
4.
Thernisien A F. Stray light analysis and testing of the SoloHI and WISPR heliospheric imagers.
SPIE,2018:10698
|
CSCD被引
1
次
|
|
|
|
5.
Frostig D. Stray light analysis and reduction for IFU spectrograph LLAMAS.
SPIE. 11447,2020:1446-1454
|
CSCD被引
1
次
|
|
|
|
6.
Hammar A. Stray light suppression of a compact off-axis telescope for a satellite-borne instrument for atmospheric research.
SPIE. 10815,2018:108150F
|
CSCD被引
1
次
|
|
|
|
7.
梅超.
大口径多光谱变焦光学系统杂散光分析与抑制技术研究,2014
|
CSCD被引
8
次
|
|
|
|
8.
Mazy E. Design and modelisation of a straylight facility for space optical instrument.
SPIE. 8550,2012:855007
|
CSCD被引
1
次
|
|
|
|
9.
Fest E C.
Stray light analysis and control,2013
|
CSCD被引
9
次
|
|
|
|
10.
Montanaro M. Stray light artifacts in imagery from the landsat 8 thermal infrared sensor.
Remote Sensing,2014,6(11):10435-10456
|
CSCD被引
12
次
|
|
|
|
11.
张苗苗.
多角度偏振成像仪杂散光特性与校正研究,2019
|
CSCD被引
3
次
|
|
|
|
12.
王治乐. 基于点源透过率的空间光学系统杂光测量.
光学技术,2011,37(4):401-405
|
CSCD被引
6
次
|
|
|
|
13.
田建国.
地球同步轨道望远镜的红外杂散光分析与抑制,2021
|
CSCD被引
1
次
|
|
|
|
14.
汪洋.
红外探测器组件杂散光分析及抑制研究,2016
|
CSCD被引
4
次
|
|
|
|
15.
Rodney S. SN refsdal:photometry and time delay measurements of the first einstein cross supernova.
The Astrophysical Journal,2016,820(1):1-18
|
CSCD被引
1
次
|
|
|
|
16.
Bond H E. The sirius system and its astrophysical puzzles:Hubble space telescope and ground-based astrometry.
The Astrophysical Journal,2017,840(2):1-17
|
CSCD被引
1
次
|
|
|
|
17.
Verlaan A L. LISA telescope assembly optical stability characterization for ESA.
SPIE. 10564,2017:105640K
|
CSCD被引
1
次
|
|
|
|
18.
Weise D. Opto-mechanical architecture of the LISA instrument.
SPIE. 10566,2017:1056611
|
CSCD被引
1
次
|
|
|
|
19.
Livas J C. Optical telescope system-level design considerations for a space-based gravitational wave mission.
SPIE. 9904,2016:99041K
|
CSCD被引
1
次
|
|
|
|
20.
Gong Y. Concepts and status of Chinese space gravitational wave detection projects.
Nature Astronomy,2021,5(9):881-889
|
CSCD被引
24
次
|
|
|
|
|