氧化钇含量对YSZ热障涂层抗CMAS腐蚀性能的影响
Effect of yttria content on CMAS resistance of YSZ thermal barrier coatings
查看参考文献30篇
文摘
|
系统研究大气等离子喷涂不同含量YO_(1.5)掺杂氧化锆涂层(8YSZ、38YSZ和55YSZ)在1300 ℃下的环境沉积物(CMAS熔盐)腐蚀行为和机制。结果表明:8YSZ涂层会发生严重的CMAS熔盐腐蚀,在基体与CMAS界面处,通过溶解-再析出,生成非保护性、含Ca和较低Y含量的C-ZrO_2,并有明显的晶界腐蚀现象;对于较高含量YO_(1.5)掺杂的38YSZ和55YSZ涂层,随着反应的进行,除球状C-ZrO_2外,还生成保护性的磷灰石(apatite)和石榴石(garnet)产物,能够有效阻止CMAS熔盐的进一步侵蚀;并且,55YSZ涂层表现出优于38YSZ的抗CMAS熔盐腐蚀能力。从光学碱度而言,YO_(1.5)含量越高,涂层与CMAS熔盐的反应活性越高,越容易生成在CMAS熔盐中稳定存在的产物;从反应进程来分析,高YO_(1.5)含量的涂层材料能够促使Y3+在CMAS熔盐中的饱和,进而生成更为稳定、连续的物相(如磷灰石、石榴石),避免基体材料进一步与CMAS熔盐接触、反应,从而提高了抗CMAS腐蚀能力。 |
其他语种文摘
|
The corrosion behavior and mechanism of environmental sediment(CMAS molten salt) on different YO_(1.5)-doped zirconia coatings(8YSZ, 38YSZ and 55YSZ) sprayed by atmospheric plasma at 1300 ℃ have been systematically studied. The results show that the 8YSZ coating has severe CMAS corrosion. At the matrix/CMAS interface, non-protective C-ZrO_2 containing Ca and low Y content is formed by dissolution-reprecipitation, accompanied by obvious grain boundary corrosion. For 38YSZ and 55YSZ coatings containing high YO_(1.5) doping content, along with the reaction, in addition to spherical C-ZrO_2, protective products of apatite and garnet are also formed, which can effectively prevent further erosion of CMAS molten salt. Moreover, 55YSZ coating shows better resistance to CMAS molten salt corrosion than 38YSZ coating. From the optical basicity perspective, the higher the YO_(1.5) content, the higher the reactivity between coating and CMAS molten salt, the easier it is to generate stable products in CMAS molten salt. From the reaction process analysis, high YO_(1.5) content can promote Y3+ in CMAS molten salt saturation, and then generate more stable, continuous phase(such as apatite, garnet), avoid matrix material and CMAS molten salt further contact and reaction, thus improving the corrosion resistance of CMAS. |
来源
|
航空材料学报
,2023,43(4):25-36 【核心库】
|
DOI
|
10.11868/j.issn.1005-5053.2023.000035
|
关键词
|
热障涂层
;
CMAS熔盐腐蚀
;
氧化钇掺杂氧化锆
;
等离子喷涂
|
地址
|
1.
中国航发商用航空发动机有限责任公司制造工程部, 上海, 200241
2.
上海交通大学材料科学与工程学院, 上海市先进高温材料及精密成型重点研究室, 上海, 200240
3.
暨南大学先进耐磨蚀及功能材料研究院, 广州, 510632
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1005-5053 |
学科
|
金属学与金属工艺 |
基金
|
上海市青年科技启明星计划
;
国家自然科学基金项目
|
文献收藏号
|
CSCD:7530387
|
参考文献 共
30
共2页
|
1.
Clarke D R. Thermal barrier coating materials.
Materials Today,2005,8(6):22-29
|
CSCD被引
100
次
|
|
|
|
2.
郑蕾. 新一代超高温热障涂层研究.
航空材料学报,2012,32(6):14-24
|
CSCD被引
40
次
|
|
|
|
3.
Padtyre N P. Thermal barrier coatings for gas-turbine engine applications.
Science,2002,296(5566):280-284
|
CSCD被引
603
次
|
|
|
|
4.
曹学强.
热障涂层新材料和新结构,2016
|
CSCD被引
18
次
|
|
|
|
5.
Poerschke D L. Silicate deposit degradation of engineered coatings in gas turbines: progress toward models and materials solutions.
Annual Review of Materials Research,2017,47(1):297-330
|
CSCD被引
30
次
|
|
|
|
6.
郭磊. 航空发动机热障涂层的CMAS腐蚀行为与防护方法.
金属学报,2021,57(9):1184-1198
|
CSCD被引
12
次
|
|
|
|
7.
杨姗洁. 热障涂层在CMAS环境下的失效与防护.
航空材料学报,2018,38(2):43-51
|
CSCD被引
19
次
|
|
|
|
8.
Cao X Q. Ceramic materials for thermal barrier coatings.
Journal of the European Ceramic Society,2004,24(1):1-10
|
CSCD被引
215
次
|
|
|
|
9.
杨乐馨. LZO/8YSZ双陶瓷热障涂层CMAS的腐蚀性能.
中国表面工程,2020,33(1):91-100
|
CSCD被引
8
次
|
|
|
|
10.
Kramer S. Infiltration-inhibiting reaction of gadolinium zirconate thermal barrier coatings with CMAS melts.
Journal of the American Ceramic Society,2008,91(2):576-583
|
CSCD被引
31
次
|
|
|
|
11.
Guo L. Calcium-magnesiumalumina-silicate (CMAS) resistance property of BaLn_2Ti_3O_(10) (Ln=La, Nd) for thermal barrier coating applications.
Ceramics International,2017,43(13):10521-10527
|
CSCD被引
4
次
|
|
|
|
12.
Wei L L. Calcium-magnesiumalumina-silicate (CMAS) resistant Ba_2REAlO_5 (RE = Yb, Er, Dy) ceramics for thermal barrier coatings.
Journal of the European Ceramic Society,2017,37(15):4991-5000
|
CSCD被引
5
次
|
|
|
|
13.
Zhang H. Chemical compatibility of rare earth apatite with yttria-stabilized zirconia.
Journal of the European Ceramic Society,2021,41(3):1995-2001
|
CSCD被引
1
次
|
|
|
|
14.
Drexler J M. Composition effects of thermal barrier coating ceramics on their interaction with molten Ca-Mg-Al-silicate (CMAS) glass.
Acta Materialia,2012,60(15):5437-5447
|
CSCD被引
28
次
|
|
|
|
15.
Eils N K. Effect of CMAS deposits on MOCVD coatings in the system Y_2O_3-ZrO_2: phase relationships.
Journal of the American Ceramic Society,2013,96(10):3333-3340
|
CSCD被引
5
次
|
|
|
|
16.
Naraparaju R. Interaction and infiltration behavior of Eyjafjallajokull, Sakurajima volcanic ashes and a synthetic CMAS containing FeO with/in EB-PVD ZrO_2-65wt% Y_2O_3 coating at high temperature.
Acta Materialia,2017,136:164-180
|
CSCD被引
7
次
|
|
|
|
17.
Wang T X. Corrosion behavior of air plasma spraying zirconia-based thermal barrier coatings subject to Calcium-Magnesium-Aluminum-Silicate (CMAS) via burner rig test.
Ceramics International,2020,46(11):18698-18706
|
CSCD被引
2
次
|
|
|
|
18.
Krause A R. 2ZrO_2·Y_2O_3 thermal barrier coatings resistant to degradation by molten CMAS:part I,optical basicity considerations and processing.
Journal of the American Ceramic Society,2014,97(12):3943-3949
|
CSCD被引
7
次
|
|
|
|
19.
Krause A R. 2ZrO_2·Y_2O_3 thermal barrier coatings resistant to degradation by molten CMAS:partⅡ,interactions with sand and fly ash.
Journal of the American Ceramic Society,2014,97(12):3950-3957
|
CSCD被引
6
次
|
|
|
|
20.
Krause A R. Interaction between ceramic powder and molten calcia-magnesia-alumino-silicate (CMAS) glass, and its implication on CMAS-resistant thermal barrier coatings.
Scripta Materialia,2016,112:118-122
|
CSCD被引
13
次
|
|
|
|
|