1981-2010年中国散射光合有效辐射的估算及时空特征分析
Assessment of the spatiotemporal variations of diffuse photosynthetic active radiation in China from 1981 to 2010
查看参考文献28篇
文摘
|
光合有效辐射(Photosynthetically active radiation, PAR)是植物光合作用的主要能量来源,其散射组分能够增强植被冠层光能利用率,从而增加碳吸收。因此,散射PAR是生态系统生产力模型的重要驱动因子。本文尝试估算我国1981-2010年的散射PAR,通过空间化得到近30年月尺度10 km分辨率的散射PAR空间数据集,并分析了其空间分布特征和时间变化趋势。结果表明:(1) 1981-2010年散射PAR多年平均值的空间分布具有明显的空间异质性,总体上东北部较低,南部和西部较高。全国范围内的多年平均值在6.66~15.27 molm~2 d~(-1)之间,且夏季散射PAR最大,冬季最小。(2) 1981-2010年全国所有像素散射PAR年平均值表现出明显的上升趋势,上升幅度为0.03 mol m~(-2)d~(-1)/10a;但前10年下降趋势明显,且1982、1983、1991和1992年存在明显异常。春季的散射PAR呈现微弱的下降趋势,其他季节均呈上升趋势。(3) 1981-2010年散射PAR时间变化率的空间分布具有明显的季节变化和区域差异,我国大体呈现南部区域上升,北部区域下降。 |
其他语种文摘
|
Photosynthetically active radiation is the energy source of plant photosynthesis, and the diffuse component can enhance canopy light use efficiency, thereby increasing the carbon uptake. Therefore, diffuse PAR is an important driving factor of ecosystem productivity models. In this study, we estimated the diffuse PAR of over 700 meteorological sites in China from 1981 to 2010 using an empirical model based on observational data from Chinese Ecosystem Research Network (CERN) and China Meteorological Administration. Then we derived the spatial data set of 10 km monthly diffuse PAR using ANUSPLIN software, and analyzed the spatiotemporal variation of diffuse PAR through GIS and trend analysis. The results showed that: (1) the spatial patterns of annual average diffuse PAR during 1981-2010 are heterogeneous across China, lower in the northeast and higher in the west and south. The nationwide average value for the 30 years ranges from 6.66 mol m~(-2) d~(-1) to 15.27 mol m~(-2) d~(-1), and the value in summer is the biggest while the value in winter is the smallest. (2) There is an evident increasing trend of annual diffuse PAR during recent 30 years, with increasing amplitude at 0.03 mol m~(-2) d ~(-1)/10a. But a significant declining trend is observed in the first 10 years, and obvious anomalies can be seen in 1982, 1983,1991 and 1992. And there is a downward trend in spring and an upward one in all other seasons. (3) The spatial distribution of temporal variation rates of diffuse PAR is inhomogeneous across the whole country, generally decreasing in the north and increasing in the south. |
来源
|
地理学报
,2014,69(3):323-333 【核心库】
|
DOI
|
10.11821/dlxb201403004
|
关键词
|
光合有效辐射
;
散射比例
;
散射光合有效辐射
;
时空变化特征
|
地址
|
中国科学院地理科学与资源研究所, 中国科学院生态系统网络观测与模拟重点实验室, 北京, 100101
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0375-5444 |
学科
|
自然地理学 |
基金
|
中国科学院先导专项
;
国家环境保护公益性行业科研专项
;
国家级自然保护区保护成效评估与规范化建设关键技术研究
|
文献收藏号
|
CSCD:5100784
|
参考文献 共
28
共2页
|
1.
Wild M. Global dimming and brightening.
Journal of Geophysical Research-Atmospheres,2009,114(21):D00D16
|
CSCD被引
56
次
|
|
|
|
2.
Wild M. From dimming to brightening: Decadal changes in solar radiation at Earth's surface.
Science,2005,308(5723):847-850
|
CSCD被引
123
次
|
|
|
|
3.
孙敬松. 散射辐射测量及其对陆地生态系统生产力影响的研究进展.
植物生态学报,2010,34(4):452-461
|
CSCD被引
12
次
|
|
|
|
4.
Zhu Xudong. Spatio-temporal variation of photosynthetically active radiation in China in recent 50 years.
Journal of Geographical Sciences,2010,20(6):803-817
|
CSCD被引
7
次
|
|
|
|
5.
何学兆. 光合有效辐射总量及其散射辐射比例变化对森林GPP影响的模拟.
自然资源学报,2011,26(4):619-634
|
CSCD被引
17
次
|
|
|
|
6.
Jacovides C P. The dependence of global and diffuse PAR radiation components on sky conditions at Athens, Greece.
Agricultural and Forest Meteorology,2007,143(3/4):277-287
|
CSCD被引
6
次
|
|
|
|
7.
Farquhar G D. Atmospheric science: Pinatubo, diffuse light, and the carbon cycle.
Science,2003,299(5615):1997-1998
|
CSCD被引
25
次
|
|
|
|
8.
Gu L H. Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis.
Science,2003,299(5615):2035-2038
|
CSCD被引
26
次
|
|
|
|
9.
Kanniah K D. Control of atmospheric particles on diffuse radiation and terrestrial plant productivity: A review.
Progress in Physical Geography,2012,36(2):209-237
|
CSCD被引
17
次
|
|
|
|
10.
Mercado L M. Impact of changes in diffuse radiation on the global land carbon sink.
Nature,2009,458(7241):1014-1017
|
CSCD被引
46
次
|
|
|
|
11.
Gu L H. Advantages of diffuse radiation for terrestrial ecosystem productivity.
Journal of Geophysical Research-Atmospheres,2002,107(D6):ACL 2-1-ACL 2-23
|
CSCD被引
4
次
|
|
|
|
12.
Gu L H. Responses of net ecosystem exchanges of carbon dioxide to changes in cloudiness.
Journal of Geophysical Research-Atmospheres,1999,104(D24):31421-31434
|
CSCD被引
16
次
|
|
|
|
13.
Zhang M. Impact of cloudiness on net ecosystem exchange of carbon dioxide in different types of forest ecosystems in China.
Biogeosciences,2010,7(2):711-722
|
CSCD被引
10
次
|
|
|
|
14.
Zhang M. Effects of cloudiness change on net ecosystem exchange, light use efficiency, and water use efficiency in typical ecosystems of China.
Agricultural and Forest Meteorology,2011,151(7):803-816
|
CSCD被引
22
次
|
|
|
|
15.
Spitters C J T. Separating the diffuse and direct component of global radiation and its implications for modeling canopy photosynthesis: 1.
Agricultural and Forest Meteorology,1986,38(1/3):217-229
|
CSCD被引
20
次
|
|
|
|
16.
Cho H K. Dependence of diffuse photosynthetically active solar irradiance on total optical depth.
Journal of Geophysical Research-Atmospheres,2003,108(D9)
|
CSCD被引
2
次
|
|
|
|
17.
Wang X P. Estimating photosynthetically active radiation distribution in maize canopies by a three-dimensional incident radiation model.
Functional Plant Biology,2008,35(9/10):867-875
|
CSCD被引
3
次
|
|
|
|
18.
Tsubo M. Relationships between photosynthetically active radiation and clearness index at Bloemfontein, South Africa.
Theoretical and Applied Climatology,2005,80(1):17-25
|
CSCD被引
5
次
|
|
|
|
19.
Ren X L. Spatiotemporal variability analysis of diffuse radiation in China during 1981-2010.
Ann Geophys,2013,31(2):277-289
|
CSCD被引
2
次
|
|
|
|
20.
Angstrom A. Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation.
Quarterly Journal of the Royal Meteorological Society,1924,50(210):121-126
|
CSCD被引
92
次
|
|
|
|
|