AlCuMgZn单晶合金的空间凝固
Solidification of AlCuMgZn Single Crystal in Space
查看参考文献26篇
文摘
|
重力对合金凝固过程与缺陷形成具有重要影响.在常规地面条件下难以清晰揭示凝固过程中的重力效应及其作用规律,而在微重力环境中重力对熔体的作用以及对凝固过程的影响大大降低.利用天宫二号空间实验并结合地面对比实验,研究AlCuMgZn单晶合金在微重力和重力环境下枝晶生长形貌和特征参数差异以及成分偏析和缺陷形成的异同,揭示重力对枝晶生长过程和成分偏析等现象的影响及其在凝固缺陷形成中的作用. |
其他语种文摘
|
Gravity plays an important role in alloy solidification process and defect formation. However, it is difficult to reveal the effects of gravity and study the mechanisms through traditional ground-based solidification experiments. Under microgravity conditions, the effects of gravity on molten melt and solidification process will be significantly diminished. Therefore, in order to explore the role of gravity in dendrite growth process and solute segregation as well as solidification defect formation, by using the microgravity environment in space, and combining with ground-based comparison experiments, the dendritic morphologies, characteristics sizes as well as solute segregation and defect formation under normal gravity and microgravity of AlCuMgZn single crystal alloy are planning to be comparatively investigated during Tiangong-2 mission. In this paper, the progress of the project, such as the research contents, sample and ampoule design, space experimental scheme and main ground-based tests and results are introduced. |
来源
|
空间科学学报
,2016,36(4):445-449 【核心库】
|
DOI
|
10.11728/cjss2016.04.445
|
关键词
|
Al合金
;
单晶合金
;
空间微重力
;
定向凝固
|
地址
|
中国科学院金属研究所, 中国科学院核用材料与安全评价重点实验室, 沈阳, 110016
|
语种
|
中文 |
ISSN
|
0254-6124 |
学科
|
航天(宇宙航行) |
基金
|
中国载人空间站工程项目资助
|
文献收藏号
|
CSCD:5752232
|
参考文献 共
26
共2页
|
1.
Hu Zhuangqi. Development of the Ni-base single crystal superalloys.
Aeroengine,2005,31(3):1-7
|
被引
11
次
|
|
|
|
2.
Wang Lin. Mechanisms for macro segregation freckles and their criteria.
Foundry Technol,2007,28(5):585-589
|
被引
1
次
|
|
|
|
3.
Al-Jarba K A. Effect of carbon additions on the as-cast microstructure and defect formation of a single crystal Ni-based superalloy.
Mat. Sci. Eng.: A,2004,373(1/2):255-267
|
被引
23
次
|
|
|
|
4.
Beckermann C. Development of a freckle predictor via Rayleigh number method for single-crystal nickel-base superalloy castings.
Metall. Mater. Trans.: A,2000,31(10):2545-2557
|
被引
16
次
|
|
|
|
5.
Madison J. Modeling fluid flow in three-dimensional single crystal dendritic structures.
Acta Mater,2010,58(8):2864-2875
|
被引
9
次
|
|
|
|
6.
Auburtin P. Freckle formation and freckle criterion in superalloy castings.
Metall. Mater. Trans.: B,2000,31(4):801-811
|
被引
30
次
|
|
|
|
7.
Sun Dongke. Modelling of dendritic growth in forced and natural convections.
Acta Phys. Sin,2009,58:285-291
|
被引
4
次
|
|
|
|
8.
Zhou B H. Comparative study of the influence of natural convection on directional solidification of Al-3.5 wt% Ni and Al-7 wt% Si alloys.
Adv. Space Res,2008,41(12):2112-2117
|
被引
4
次
|
|
|
|
9.
Banaszek J. Natural convection and columnar-to-equiaxed transition prediction in a front-tracking model of alloy solidification.
Metall. Mater. Trans.: A,2007,38(7):1476-1484
|
被引
5
次
|
|
|
|
10.
Trivedi R. Directional solidification microstructures in diffusive and convective regimes.
J. Cryst. Growth,2001,222(1/2):365-379
|
被引
17
次
|
|
|
|
11.
Jiang Mingwei. Effects of specimen dimensions on directional solidification microstructure and interface stability of Al-4.5%Cu alloy.
Foundry,2007,56(12):1307-1309
|
被引
1
次
|
|
|
|
12.
Zhu C S. Convection effect on dendritic growth using phase-field method.
China Foundry,2010,7(1):52-56
|
被引
3
次
|
|
|
|
13.
Steinbach I. Pattern formation in constrained dendritic growth with solutal buoyancy.
Acta Mater,2009,57(9):2640-2645
|
被引
6
次
|
|
|
|
14.
Tan L J. Modeling the growth and interaction of multiple dendrites in solidification using a level set method.
J. Comput. Phys,2007,226(1):131-155
|
被引
3
次
|
|
|
|
15.
Yuan L. Dendritic solidification under natural and forced convection in binary alloys: 2D versus 3D simulation.
Model. Simul. Mater. Sc,2010,18(5):1277-1284
|
被引
2
次
|
|
|
|
16.
Asta M. Solidification microstructures and solid-state parallels: Recent developments, future directions.
Acta Mater,2009,57(4):941-971
|
被引
65
次
|
|
|
|
17.
Ma D X. Avoiding grain defects in single crystal components by application of a heat conductor technique.
Int. J. Mater. Res,2009,100(8):1145-1151
|
被引
5
次
|
|
|
|
18.
Yang X L. Simulation of stray grain formation during single crystal seed melt-back and initial withdrawal in the Ni-base superalloy CMSX4.
Mat. Sci. Eng.: A,2005,413:571-577
|
被引
13
次
|
|
|
|
19.
Gao Sifeng. Review of freckle defects under directional solidification of nickel-based superalloys.
J. Mat. Sci. Eng,2010,28(1):145-151
|
被引
1
次
|
|
|
|
20.
Zhou Y F. Comparison of space- and ground-grown Bi_2Se_(0.21)Te_(2.79) thermoelectric crystals.
J. Cryst. Growth,2010,312(6):775-780
|
被引
9
次
|
|
|
|
|