钢凝固两相区溶质元素的微观偏析及其对连铸坯表面纵裂纹的影响
MICROSEGREGATION OF SOLUTE ELEMENTS IN SOLIDIFYING MUSHY ZONE OF STEEL AND ITS EFFECT ON LONGITUDINAL SURFACE CRACKS OF CONTINUOUS CASTING STRAND
查看参考文献19篇
文摘
|
以Ueshima的正六边形横断面枝晶模型为原型,采用有限差分方法建立了钢凝固过程伴随δ/γ相变的两相区溶质微观偏析模型,确立了在冷却速率为10℃/s非平衡凝固条件下钢的脆性温度区间,研究分析了各溶质元素在该温度区内的偏析特点及对脆性温度区间△θ与热应变的影响规律,定量计算了不同P,S含量下脆性温度区热应变随C含量的变化规律,揭示了P,S含量的增加使连铸坯出现表面纵裂纹几率提高的机理. |
其他语种文摘
|
The solidification of molten steel in continuous casting mold is a complicated non-equilibrium process with high cooling rate of 10-100℃/s.At such a cooling rate,the segregation of the solute elements such as C,Si,Mn,P and S in brittle temperature range(Δθ_B) will vary with their initial contents and influence on the thermal strain significantly which could greatly increase the incidence of surface defects of strand.In this paper,a microsegregation model of solute elements in mushy zone withδ/γtransformation during solidification was established based on the regular hexagon transverse cross section of dendrite shape proposed by Ueshima by finite difference method under the non-equilibrium solidification condition at 10℃/s of cooling rate and the brittle temperature rangeΔθ_B was determined.The distribution characteristics of solute elements and the effect of their segregations onΔθ_B and thermal strain were investigated.The results show that both P and S are the most serious segregation elements in final stage of solidification and affect onΔθ_B significantly together with carbon content in molten steel.The mechanism that increasing contents of P and S may increase the probability of longitudinal surface crack for continuous casting strand was presented by calculating the change law of thermal strain with carbon content under different of P and S contents. |
来源
|
金属学报
,2009,45(8):949-955 【核心库】
|
关键词
|
连铸
;
微观偏析
;
表面纵裂纹
;
脆性温度区
;
热应变
|
地址
|
东北大学材料与冶金学院, 辽宁, 沈阳, 110004
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0412-1961 |
学科
|
金属学与金属工艺 |
基金
|
国家教育部新世纪优秀人才支持计划
|
文献收藏号
|
CSCD:3752450
|
参考文献 共
19
共1页
|
1.
Konishi J.
Metallurgical and Materials Transactions,2002,33B:413
|
被引
1
次
|
|
|
|
2.
Thomas B G.
Trans Iron Steel Soc AIME,1986,7:21
|
被引
1
次
|
|
|
|
3.
Kim K.
Ironmaking and Steelmaking,1997,24:249
|
被引
33
次
|
|
|
|
4.
Kobayashi S.
Transactions of the Iron and Steel Institute of Japan,1988,28:543
|
被引
5
次
|
|
|
|
5.
Ueshima Y.
Metallurgical and Materials Transactions B,1986,17:845
|
被引
5
次
|
|
|
|
6.
Kim K.
ISIJ International,1996,36:284
|
被引
5
次
|
|
|
|
7.
Suzuki M.
MATERIALS TRANSACTIONS,2003,44:836
|
被引
3
次
|
|
|
|
8.
Muojekwu C A.
Metallurgical and Materials Transactions B,1995,26:361
|
被引
6
次
|
|
|
|
9.
Zhu Z Y.
Proceedings of Asia Steel International Conference,2000:358
|
被引
1
次
|
|
|
|
10.
Suni J.
PhD thesis,1991
|
被引
1
次
|
|
|
|
11.
EL-Bealy M.
Metallurgical and Materials Transactions B,1996,27:689
|
被引
10
次
|
|
|
|
12.
Kawawa T.
Tekko-Binran (Handbook for Steel),1981:205
|
被引
1
次
|
|
|
|
13.
Schmidtmann E.
Archiv Eisenhuttenwesen,1983,54:357
|
被引
1
次
|
|
|
|
14.
申健.
铁と钢,1992,78:587
|
被引
1
次
|
|
|
|
15.
佐伯毅.
铁钢,1982,68:1173
|
被引
1
次
|
|
|
|
16.
LI C S.
Metallurgical and Materials Transactions,2004,35B:1151
|
被引
4
次
|
|
|
|
17.
Clyne T W.
Metallurgical and Materials Transactions B,1982,13:259
|
被引
9
次
|
|
|
|
18.
Davies G J.
Solidification Technology in the Foundry and Cast House,1979:517
|
被引
3
次
|
|
|
|
19.
松宫徹.
铁と钢,1982,68:1782
|
被引
2
次
|
|
|
|
|