喀斯特坡地土壤硫同位素变化指示的土壤硫循环
Sulfur Isotopic Ratios Indicating Sulfur Cycling in Slope Soils of Karst Areas
查看参考文献34篇
文摘
|
用土壤硫形态连续提取方法分离测定了喀斯特坡地土壤总硫、有机硫、SO_4~(2-)和FeS_2的硫同位素组成及其含量.总体来看,土壤剖面表层各形态硫δ~(34)S值FeS_2最低,介于-6.86‰~-4.22‰,其次为SO_4~(2-)(-2.64‰~-1.34‰),第三为总硫 (-3.25‰~-1.03‰),最高为有机硫(-1.63‰~0.50‰),随土壤剖面加深各形态硫δ~(34)S值均有增大的趋势. SO_4~(2-)和FeS_2的δ~(34)S值深度分布具有共变性,这与SO_4~(2-)异化还原有关;而总硫和有机硫的δ~(34)S值随剖面加深而平行增大,则与有机硫循环有关.硫同位素组成可鉴别土壤硫源,同时SO_4~(2-)异化还原和有机硫矿化有明显的硫同位素分馏,而硫化物氧化及SO2-4同化基本不产生同位素分馏,则土壤各形态硫的硫同位素组成的垂直变化可以很好地记录与深度相关的硫循环过程.并且,通过对比各形态硫含量及其硫同位素组成的深度分布特征,也可以很好地判别土壤内部的SO_4~(2-)和有机硫组分的迁移过程 |
其他语种文摘
|
Sequential extraction methods for soil sulfur were used to determine δ~(34)S ratios and sulfur contents of total sulfur, organic sulfur, SO_4~(2-) and FeS_2 in slope soils of karst areas. In general, FeS_2 has the lowest δ~(34)S ratios, ranging from -6. 86‰ to -4. 22%o, followed in ascending order by S_4~(2-) ( - 2. 64‰- - 1. 34‰), total sulfur ( - 3. 25%o- - 1. 03‰) and organic sulfur ( - 1. 63%o-0.50%o) in surface soils of profiles, and δ~(34)S ratios in different sulfur forms all show increasing trend with profiles deepening. Covariations of δ~(34)S ratios of SO_4~(2-) and FeS_2 with increasing depth are related to SO_4~(2-) dissimilatory reduction, while the increase in parallel of δ~(34)S ratios of total sulfur and organic sulfur could be resulted from organic sulfur cycling. δ~(34)S ratios have been extensively used to indicate sulfur sources, moreover, SO_4~(2-) dissimilatory reduction and organic sulfur mineralization result in significant sulfur isotopic fractionation, and sulfides oxidation and SO_4~(2-) assimilation have no isotopic fractionation occurred, the vertical variations of δ~(34)S ratios in different sulfur forms can therefore be good records for depth-dependant sulfur cycling processes. Furthermore, by comparing depth distributions of sulfur contents and δ~(34)S ratios in different sulfur forms, it is easily to discuss the migration of SO_4~(2-) and organic sulfur fractions in soil profiles |
来源
|
环境科学
,2010,31(2):415-422 【核心库】
|
关键词
|
喀斯特
;
黄色石灰土
;
黄壤
;
硫同位素
;
硫循环
|
地址
|
1.
天津师范大学, 水环境与水资源天津市重点实验室, 天津, 300387
2.
中国科学院地球化学研究所, 环境地球化学国家重点实验室, 贵阳, 550002
3.
贵州师范大学化学与材料科学学院, 贵阳, 550001
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0250-3301 |
学科
|
环境科学基础理论;环境污染及其防治 |
基金
|
中国科学院知识创新工程西部行动计划项目
;
国家973计划
;
天津市科技发展计划项目
|
文献收藏号
|
CSCD:3933875
|
参考文献 共
34
共2页
|
1.
Mitchell M J. Models of sulfur dynamics in forest and grassland ecosystems with emphasis on soil processes.
Biogeochemistry,1988,5:133-163
|
CSCD被引
2
次
|
|
|
|
2.
Mayer B. Interpretation of sulfur cycling in two catchments in the black forest ( Germany) using stable sulfur and oxygen isotope data.
Biogeochemistry,1995,30:31-58
|
CSCD被引
7
次
|
|
|
|
3.
Novak M. Sulfur isotope signals in forest soils of Central Europe along an air pollution gradient.
Environ Sci Technol,1996,30:3473-3476
|
CSCD被引
3
次
|
|
|
|
4.
Larssen T. Acid rain and acidi? cation in China: the importance of base cation deposition.
Environ Pollut,2000,110:89-102
|
CSCD被引
63
次
|
|
|
|
5.
Driscoll C T. Effects of acidic deposition on forest and aquatic ecosystems in New York State.
Environ Pollut,2003,123:327-336
|
CSCD被引
18
次
|
|
|
|
6.
Prietzel J. Effects of repeated (NH_4 )_2SO_4 application on sulfur pool in soil, soil microbial biomass, and ground vegetation of two watersheds in the Black Forest, Germany.
Plant Soil,2001,230:287-305
|
CSCD被引
4
次
|
|
|
|
7.
Prietzel J. Cumulative impact of 40 years of industrial sulfur emissions on a forest soil in west-central Alberta (Canada).
Environ pollut,2004,132:129-144
|
CSCD被引
12
次
|
|
|
|
8.
Novak M. Sulfur isotope dynamics in two Central European watersheds affected by high atmospheric deposition of SO_x.
Geochim Cosmochim Ac,2000,64:367-383
|
CSCD被引
5
次
|
|
|
|
9.
Novak M. Similarity between C, N and S stable isotope profiles in European spruce forest soils: implications for the use of δ~(34)S as a tracer.
Appl Geochem,2003,18:765-779
|
CSCD被引
10
次
|
|
|
|
10.
Alewell C. Patterns of stable S isotopes in a forested catchment as indicators for biological S turnover.
Biogeochemistry,1999,47:319-333
|
CSCD被引
3
次
|
|
|
|
11.
Zhang Y M. Stable sulfur isotopic biogeochemistry of the Hubbard Brook Experimental Forest, New Hampshire.
Biogeochemistry,1998,41:259-275
|
CSCD被引
2
次
|
|
|
|
12.
刘丛强. 西南喀斯特流域碳酸盐岩的硫酸侵蚀与碳循环.
地球化学,2008,37:404-414
|
CSCD被引
116
次
|
|
|
|
13.
Duan W M. Preliminary study on the geochemical and microbiological characteristics of modern sedimentary concretions.
Limnol Oceanogr,1996,41:1404-1414
|
CSCD被引
2
次
|
|
|
|
14.
Alewell C. Spotting zones of dissimilatory sulfate reduction in a forested catchment: The ~(34)S-~(35)S approach.
Environ Pollut,2001,112:369-377
|
CSCD被引
10
次
|
|
|
|
15.
Backlund K. An analytical procedure for determination of sulfur species and isotopes in boreal acid sulfate soils and sediments.
Agr Food Sci,2005,14:70-82
|
CSCD被引
7
次
|
|
|
|
16.
Wieder R K. An evaluation of wet chemical methods for quantifying sulfur fractions in freshwater wetland peat.
Limnol Oceanogr,1985,30:1109-1115
|
CSCD被引
4
次
|
|
|
|
17.
Bates A L. Speciation and isotopic composition of sulfur in sediments from Jellyfish Lake, Palau.
Chem Geol,1993,106:63-76
|
CSCD被引
4
次
|
|
|
|
18.
Canfield D E. The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales.
Chem Geol,1986,54:149-155
|
CSCD被引
44
次
|
|
|
|
19.
Duan W M. Determination of reduced sulphur species in sediments-an evaluation and modified technique.
Chem Geol,1997,141:185-194
|
CSCD被引
2
次
|
|
|
|
20.
.
EPA Method 9034,Titrimetric procedure for acid-soluble and acid insoluble sulfides,1996
|
CSCD被引
1
次
|
|
|
|
|