微氧环境中电化学活性微生物的分离与鉴定
Isolation and Identification of Electrochemically Active Microorganism from Micro-Aerobic Environment
查看参考文献31篇
文摘
|
电化学活性微生物在金属、 碳等元素的生物地球化学循环,以及生物能源合成中具有重要作用. 与微生物燃料电池厌氧阳极相比,微氧阳极能够捕集更多电能. 但是相比于厌氧阳极中功能微生物的广泛研究,微氧阳极中的功能微生物还未被分离和研究. 本研究采用传统好氧分离技术从微生物燃料电池微氧阳极分离获得3株纯菌Aeromonas sp. WS-XY2、 Citrobacter sp. WS-XY3和Bacterium strain WS-XY4,其中WS-XY2和WS-XY3属于变形菌门,WS-XY4初步鉴定为新种. 循环伏安、 计时电流结果表明3株菌均具有电化学活性,且具有相似的直接胞外电子传递机制. 3株菌在微生物分类学和电化学性质上的异同,表明微氧阳极能够定向筛选具有相似电化学性质的电化学活性微生物. 微生物燃料电池微氧阳极具有更高效多样的功能微生物,可能是微氧阳极性能优于厌氧阳极的一个原因. 因此,进一步针对微生物燃料电池微氧阳极中功能微生物的研究,将有助于阐明微氧阳极提高微生物燃料电池电能捕集的微生物机制. |
其他语种文摘
|
Extracellular electron transfer of electrochemically active microorganism plays vital role in biogeochemical cycling of metals and carbon and in biosynthesis of bioenergy. Compared to anaerobic anode, micro-aerobic anode captures more energy from microbial fuel cell. However, most of previous researches focused on functioning bacteria in anaerobic anode, functioning bacteria in micro-aerobic anode was rarely studied. Herein, we used the traditional aerobic screening technology to isolate functioning bacteria from a micro-aerobic anode. Three pure cultures Aeromonas sp. WS-XY2, Citrobacter sp. WS-XY3 and Bacterium strain WS-XY4 were obtained. WS-XY2 and WS-XY3 were belonged to Proteobacteria, whereas WS-XY4 was possibly a new species. Cyclic voltammetry and chronoamperometry analysis demonstrated all of them showed the electrochemical activity by direct extracellular electron transfer, and micro-aerobic anode could select bacteria that have similar electrochemical activity to proliferate on the anode. We further conclude that functioning bacteria in micro-aerobic anode are more efficient than that of anaerobic anode may be the reason that micro-aerobic anode has better performance than anaerobic anode. Therefore, a thorough study of functioning bacteria in micro-aerobic anode will significantly promote the energy recovery from microbial fuel cell. |
来源
|
环境科学
,2014,35(10):3933-3939 【核心库】
|
DOI
|
10.13227/j.hjkx.2014.10.041
|
关键词
|
电化学活性微生物
;
微生物燃料电池
;
微氧阳极
;
循环伏安
;
计时电流
|
地址
|
1.
湖南大学环境科学与工程学院, 环境生物与控制教育部重点实验室, 长沙, 410082
2.
中国科学院城市环境研究所, 厦门, 361021
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
0250-3301 |
学科
|
环境科学基础理论 |
基金
|
国家自然科学基金项目
|
文献收藏号
|
CSCD:5244934
|
参考文献 共
31
共2页
|
1.
肖勇. 电化学活性微生物的分离与鉴定.
化学进展,2013,25(10):1771-1780
|
CSCD被引
8
次
|
|
|
|
2.
Kato S. Microbial interspecies electron transfer via electric currents through conductive minerals.
Proceedings of the National Academy of Sciences of the United States of America,2012,109(25):10042-10046
|
CSCD被引
45
次
|
|
|
|
3.
Wang X. Bioelectrochemical stimulation of petroleum hydrocarbon degradation in saline soil using U-tube microbial fuel cells.
Biotechnology and Bioengineering,2012,109(2):426-433
|
CSCD被引
41
次
|
|
|
|
4.
Huang L P. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells.
Environmental Science & Technology,2011,45(11):5025-5031
|
CSCD被引
17
次
|
|
|
|
5.
Lovley D R. Electromicrobiology.
Annual Review of Microbiology,2012,66:391-409
|
CSCD被引
36
次
|
|
|
|
6.
Rosenbaum M. Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production.
Biotechnology and Bioengineering,2010,105(5):880-888
|
CSCD被引
2
次
|
|
|
|
7.
Fan Y Z. Improved performance of CEA microbial fuel cells with increased reactor size.
Energy & Environmental Science,2012,5(8):8273-8280
|
CSCD被引
6
次
|
|
|
|
8.
Ringeisen B R. A miniature microbial fuel cell operating with an aerobic anode chamber.
Journal of Power Sources,2007,165(2):591-597
|
CSCD被引
14
次
|
|
|
|
9.
TerAvest M A. Oxygen allows Shewanella oneidensis MR-1 to overcome mediator washout in a continuously fed bioelectrochemical system.
Biotechnology and Bioengineering,2014,111(4):692-699
|
CSCD被引
2
次
|
|
|
|
10.
Quan X C. Comparative investigation on microbial community and electricity generation in aerobic and anaerobic enriched MFCs.
Bioresource Technology,2013,128:259-265
|
CSCD被引
7
次
|
|
|
|
11.
冯玉杰. 电化学产电菌的分离及性能评价.
环境科学,2010,31(11):2804-2810
|
CSCD被引
5
次
|
|
|
|
12.
Erguder T H. Investigation of granulation of a mixture of suspended anaerobic and aerobic cultures under alternating anaerobic/microaerobic/aerobic conditions.
Process Biochemistry,2005,40(12):3732-3741
|
CSCD被引
4
次
|
|
|
|
13.
Yang Z H. Comparison of methods for total community DNA extraction and purification from compost.
Applied Microbiology and Biotechnology,2007,74(4):918-925
|
CSCD被引
23
次
|
|
|
|
14.
Xiao Y. Promoting electrogenic ability of microbes with negative pressure.
Journal of Power Sources,2013,229:79-83
|
CSCD被引
7
次
|
|
|
|
15.
Masuda M. Flavins contained in yeast extract are exploited for anodic electron transfer by Lactococcus lactis.
Bioelectrochemistry,2010,78(2):173-175
|
CSCD被引
4
次
|
|
|
|
16.
Embley T M. The molecular phylogency and systematics of the actinomycetes.
Annual Reviews in Microbiology,1994,48(1):257-289
|
CSCD被引
12
次
|
|
|
|
17.
Goodfellow M.
Handbook of new bacterial systematics,1993:191-195
|
CSCD被引
1
次
|
|
|
|
18.
Logan B E. Electricity-producing bacterial communities in microbial fuel cells.
Trends in Microbiology,2006,14(12):512-518
|
CSCD被引
66
次
|
|
|
|
19.
Yuan S J. A photometric high-throughput method for identification of electrochemically active bacteria using a WO_3 nanocluster probe.
Scientific Reports,2013
|
CSCD被引
1
次
|
|
|
|
20.
范明志. 阳极初始电势对微生物燃料电池产电的影响.
环境科学,2008,29(1):263-267
|
CSCD被引
9
次
|
|
|
|
|