中等Reynolds数平板绕流的动理论分析
KINETIC ANALYSIS OF THE FLOW PAST A FLAT PLATE AT MODERATE REYNOLDS NUMBERS
查看参考文献26篇
文摘
|
郭永怀先生1953年给出的中等Reynolds数下、不可压缩流体有限长平板绕流的解析解是边界层理论中的经典工作.许多研究者对平板绕流阻力系数的郭水怀公式以及后续工作进行了评估,评估的依据是Janour与Schaaf和Sherman的实验数据.本文的动理论分析和计算表明:Schaaf和Sherman在低亚声速条件下(0.16
|
其他语种文摘
|
An analytical solution given by Y.H.Kuo in 1953 for the incompressible flow past a flat plate at moderate Reynolds numbers was a classical work of boundary layer theory.Many researchers,based on experimental data given respectively by Janour and Schaaf and Sherman,made an assessment of Kuo's formula and carried out follow-up studies for determining the drag coefficient around a flat plate. Kinetic analyses in the present paper show that the experimental data of Schaaf & Sherman in low subsonic situations (0.16 < M < 0.21) is not suitable to serve as a standard to assess an incompressible theory when the Reynolds number (Re) ranges from 1 to 10, because the corresponding Knudsen numbers under the experimental conditions are about between 0.03 and 0.3, indicating significant rarefied gas effects, while other experimental data satisfying the incompressible assumption support Kuo's formula. When rarefied gas effects are taken into account, the drag coefficient around a flat plate in low-speed or subsonic situations may be expressed as C_D = C_(D,c)×C_(d,fm)/(C_(d,c) + C_(d,fm)), where C_(Dc) and C_(d,fm) are the theoretical solutions at continuum and free molecular limits, respectively. Kuo's solution for the velocity distribution past a flat plate is in qualitative agreement with the numerical results given by the information preservation (IP) method based on kinetic theory, with some difference occurring at the leading edge where rarefied gas effects become significant. Compared with Blasius solution to the velocity distribution, Kuo's correction becomes important when Re < 100. |
来源
|
力学进展
,2009,39(4):421-425 【核心库】
|
关键词
|
平板绕流
;
郭永怀解
;
稀薄气体效应
;
动理论分析
;
IP方法
|
地址
|
中国科学院力学研究所, 高温气体动力学重点实验室, 北京, 100190
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1000-0992 |
学科
|
力学 |
基金
|
国家自然科学基金
|
文献收藏号
|
CSCD:3669620
|
参考文献 共
26
共2页
|
1.
.
郭永怀文集,1982
|
CSCD被引
1
次
|
|
|
|
2.
Kuo Y H. On the flow of an incompressible viscous fluid past a flat plate at moderate Reynolds numbers.
Journal of Mathematical Physics,1953,32:83-101
|
CSCD被引
7
次
|
|
|
|
3.
Ritter A.
Reflection of a weak shock wave from a boundary layer along a fiat plate.Ⅰ.Interaction ofweak shock waves with laminar and turbulent boundary layers analyzed by moment-integral method[NACA-TN-2869],1953
|
CSCD被引
1
次
|
|
|
|
4.
Kuo Y H.
Reflection of a weak shock wave from a boundary layer along a fiat plate.Ⅱ.Interaction of oblique shock wave with laminar boundary layer analyzed by differential-equation method[NASA-TN-2869],1953
|
CSCD被引
1
次
|
|
|
|
5.
Kuo Y H. Viscous flow along a flat plate moving at high supersonic speeds.
Journal of Aerosol Science,1956,23:125-136
|
CSCD被引
1
次
|
|
|
|
6.
Kuo Y H. Viscous flow along a flat plate moving at high supersonic speeds.
Journal of Aerosol Science,1956,23:977-978
|
CSCD被引
1
次
|
|
|
|
7.
Kuo Y H. The effects of Prandtl number on high-speed viscous flows over a fiat plate.
Journal of Aerosol Science,1956,23:1058-1059
|
CSCD被引
1
次
|
|
|
|
8.
Kuo Y H. Dissociate effects in hypersonic viscous flows.
Journal of Aerosol Science,1957,24:345-350
|
CSCD被引
1
次
|
|
|
|
9.
李家春.
数学物理中的渐近方法,1998
|
CSCD被引
14
次
|
|
|
|
10.
Tsien H S. The Poincare-Lighthill-Kuo method.
Adv Appl Meck,1955,4:281-349
|
CSCD被引
1
次
|
|
|
|
11.
Imai I. Second approximation to the laminar boundary layer flow over a flat plate.
J Aevo Sci,1956,24:155-156
|
CSCD被引
1
次
|
|
|
|
12.
Van Dyke M. Higher approximations in boundary layer theory.Part 1:General analysis.
Journal of Fluid Mechanics,1962,14:161-177
|
CSCD被引
3
次
|
|
|
|
13.
Van Dyke M. Higher approximations in boundary layer theory.Part 1:Application to leading edges.
Journal of Fluid Mechanics,1962,14:481-495
|
CSCD被引
2
次
|
|
|
|
14.
Dennis SCR. The steady flow of a viscous fluid past a fiat plate.
Journal of Fluid Mechanics,1966,24:577-595
|
CSCD被引
1
次
|
|
|
|
15.
Messeiter A F. Boundary layer flow near the trailing edge of a flat plate.
AIAM J Appl Math,1970,18:241-257
|
CSCD被引
1
次
|
|
|
|
16.
Jobe C E. The numerical solution of the asymptotic equations of trailing edge flow.
Proceedings of the Royal Society of London Series A:Mathematical and Physical Sciences,1974,340:91-111
|
CSCD被引
1
次
|
|
|
|
17.
Chen H C. Laminar flow at the trailing edge of a fiat plate.
AIAA Journal,1987,25:920-928
|
CSCD被引
1
次
|
|
|
|
18.
Sherman F S.
Rarefied gas dynamics 3,1962:228-259
|
CSCD被引
1
次
|
|
|
|
19.
Jones C W. Tow-dimensional boundary layers.
Laminar Boundary Layers,1963
|
CSCD被引
1
次
|
|
|
|
20.
White F M.
Viscous Fluid Flow(2nd Edition),1991
|
CSCD被引
1
次
|
|
|
|
|