纳弧度分辨的X射线单色器布拉格转轴研究
Research on a Bragg Rotation Mechanism of X-ray Monochromators with a Nanoradian Resolution
查看参考文献17篇
文摘
|
为了满足同步辐射衍射极限环、X射线自由电子激光装置等新一代光源光束线中对高稳定机械运动机构在大角度范围内的纳弧度角度分辨需求,研制了一种X射线单色器晶体布拉格角调节装置。此装置将优化改良的偏置式曲柄滑块机构与柔性铰链结合。本文分析了平移-角度正弦的运动学关系,建立了运动机构的优化模型,并利用高精度非接触激光干涉测量方法进行了精确的角位移监测。结果表明:该装置传动性能、角度分辨率和角度稳定性基本符合模型的分析结果,且在线性传动关系范围内,角度分辨率优于31.2 nrad;在800 s时间内角度稳定性优于16 nrad。该机构的设计对晶体单色器的使用具有极大的便利性,并为实现十纳弧度量级角度稳定性关键技术攻关奠定了基础。 |
其他语种文摘
|
The new-generation X-ray light sources based on accelerators,Diffraction-limited Storage Rings (DLSRs),and X-ray Free-electron Lasers (XFELs),have excellent properties such as high brightness,high coherence,and high collimation,which has enhanced important opportunities for scientific research and technological development.In the meantime,that brings a lot of challenges on the photon beam manipulation as well,the performance demand of optical components have been greatly improved,and at the same time,the attitude adjustment accuracy of optical components has generally entered the"micro/nano"range,such as the resolution of linear motion and angular rotation of optical components are supposed to reach a level of sub-nanometre and nanoradian.In the construction of the beamline,the monochromator is one of the core equipment to guarantee the optical performance of the beamline.In order to meet requirements of high stability and motion precision of beamline optics,for crystal monochromators in the new-generation light sources,a mechanism with a nano-radian angular resolution,driven by piezoelectric nano-displacement stages was developed.An optimized slider-crank mechanism is adopted for a large angle range of tens of degrees,so that a broader energy range can be covered with relatively big Bragg diffraction angles.This paper presents the main design parameters of the offset slider-crank mechanism for crystal monochromators according to the demand of energy range,the energy resolution and the required linear transmission ratio of X-ray crystal monochromator.By establishing a geometrical model of the slider-crank mechanism,it turns out that the transmission ratio between the linear displacement and the Sine of the Bragg angle depends solely on the crank rod length.Therefore,the length of crank rod can be determined according to the transmission ratio.At the same time,an optimized model of the offset slider-crank mechanism parameters is established in this paper,and the length of the connecting rod was determined according to achieving a high-precision linear transmission ratio in a large angle range.Finally,the precise angular displacement monitoring was carried out using a high-precision non-contact Fabry- Perot laser interferometer.The measurement errors of the high-precision angle measurement method are analyzed and it is found that the measurement errors can be ignored in the extremely small measurement range within an incremental step.The final results show that an angular resolution of 31.2 nrad can be achieved with a good linear relation of transmission,and the angular stability is better than 16 nrad within 800 seconds.The design of this mechanism has a great convenience for crystal'S adjustment of X-Ray monochromators,and it is conducive to techniques studies on an angular stability of nanoradians. |
来源
|
光子学报
,2022,51(5):0551317 【核心库】
|
DOI
|
10.3788/gzxb20225105.0551317
|
关键词
|
偏置式曲柄滑块机构
;
纳弧度分辨
;
稳定性
;
角度测量
;
线性关系
|
地址
|
1.
中国科学院上海应用物理研究所, 上海, 201800
2.
中国科学院大学, 北京, 100049
3.
中国科学院上海高等研究院, 上海, 201204
4.
中国科学院西安光学精密机械研究所, 西安, 710119
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1004-4213 |
学科
|
物理学 |
基金
|
国家自然科学基金
;
中科院"BR计划"人才项目(2018)
;
上海市市级科技重大专项
|
文献收藏号
|
CSCD:7236150
|
参考文献 共
17
共1页
|
1.
徐洪杰.
上海光源首批线站设计与研制,2015
|
CSCD被引
1
次
|
|
|
|
2.
Choi J W. Advanced materials characterization using synchrotron radiation.
Current Applied Physics,2021,30:1-3
|
CSCD被引
1
次
|
|
|
|
3.
刘宪云. α-蒎稀光电离和离解动力学的同步辐射研究.
光子学报,2018,47(6):0630002
|
CSCD被引
1
次
|
|
|
|
4.
Ren C Y. Development of micro-Laue technique at Shanghai Synchrotron Radiation Facility for materials sciences.
Science China Materials,2021,64(9):2348-2358
|
CSCD被引
2
次
|
|
|
|
5.
李顺. 一种软X射线荧光吸收谱探测器.
光子学报,2019,48(6):0604001
|
CSCD被引
1
次
|
|
|
|
6.
陈家华. 软X射线光发射电子显微镜光束线聚焦用KB镜系统.
光学精密工程,2017(11):2810-2816
|
CSCD被引
1
次
|
|
|
|
7.
Fan Y C. Angular stability measurement of a cryocooled double-crystal monochromator at SSRF.
Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,2020:983
|
CSCD被引
1
次
|
|
|
|
8.
周泗忠. 弧矢聚焦双晶单色器性能测试研究.
光子学报,2007,36(12):2346-2349
|
CSCD被引
7
次
|
|
|
|
9.
Huang N Sh. Features and futures of X-ray free-electron lasers.
The Innovation,2021:100097
|
CSCD被引
25
次
|
|
|
|
10.
Henein S. Mechanical design of a spherical grating monochromator for the microspectroscopy beamline PolLux at the Swiss Light Source.
AIP Conference Proceedings,2007
|
CSCD被引
1
次
|
|
|
|
11.
Ohashi H. Beamline mirrors and monochromator for X-ray free electron laser of SACLA.
Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment,2013,710:139-142
|
CSCD被引
3
次
|
|
|
|
12.
Beckers J. Analysis of the dynamics of a slider-crank mechanism locally actuated with an act-and-wait controller.
Mechanism and Machine Theory,2021,159:104253
|
CSCD被引
2
次
|
|
|
|
13.
Martel K. Nano radian angular resolution flexure stage for ID28 post-monochromator.
International Workshop on Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation,2006
|
CSCD被引
1
次
|
|
|
|
14.
Shu D. Modular overconstrained weak-link mechanism for ultraprecision motion control.
Nuclear Instruments and Methods in Physics Research Section A:Accelerators Spectrometers Detectors and Associated Equipment,2001,467/468:771-774
|
CSCD被引
2
次
|
|
|
|
15.
Alcock S G. A novel instrument for generating angular increments of 1 nanoradian.
Review of Scientific Instruments,2015,86(12):125108
|
CSCD被引
2
次
|
|
|
|
16.
徐朝银.
同步辐射光学与工程,2013
|
CSCD被引
5
次
|
|
|
|
17.
Narayanan S. Design and performance of an ultra-high-vacuum-compatible artificial channel-cut monochromator.
Journal of Synchrotron Radiation,2008,15(1):12-18
|
CSCD被引
1
次
|
|
|
|
|