Fe_(40)Cr_(25)Ni_(25)Al_5Ti_5中熵合金的微观组织和力学性能
Microstructure and mechanical properties of Fe_(40)Cr_(25)Ni_(25)Al_5Ti_5medium entropy alloy
查看参考文献35篇
文摘
|
采用真空电弧熔炼炉制备Fe_(40)Cr_(25)Ni_(25)Al_5Ti_5(原子分数/%)中熵合金,利用扫描电镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)、透射电镜(TEM)及拉伸试验机研究合金固溶态和退火态的微观组织、力学性能、强化机制及变形机制。结果表明:Fe_(40)Cr_(25)Ni_(25)Al_5Ti_5中熵合金固溶态为FCC+BCC1+BCC2三相固溶体组织,屈服强度为520MPa,断裂强度为852MPa,伸长率为13%。经600℃退火2h,合金相组成未改变,颗粒状BCC2相尺寸增大,FCC区与BCC区体积分数无明显变化,屈服强度为668MPa,断裂强度达1029MPa,伸长率降低至9%。Fe_(40)Cr_(25)Ni_(25)Al_5Ti_5合金的强度源于共格应变强化、固溶强化及界面强化的协同作用,位错滑移为合金主要的变形机制。 |
其他语种文摘
|
Fe_(40)Cr_(25)Ni_(25)Al_5Ti_5(atom fraction/%)medium entropy alloys(MEAs)were prepared by a vacuum arc-melting furnace with a water-cooled copper mold,and the microstructure,mechanical properties and strengthening deformation mechanism of the alloy in solid solution and annealed states were studied by scanning electron microscopy (SEM),energy spectrometry(EDS), X-ray diffractometer(XRD),transmission electron microscopy(TEM)and tensile testing machine.The results show that the Fe_(40)Cr_(25)Ni_(25)Al_5Ti_5 medium entropy alloy has FCC+BCC1+BCC2triple-phase organization of solid solution state,with yield strength of 520MPa,fracture strength of 852MPa and elongation of 13%.After annealing at 600 ℃ for 2h,the phase composition of the alloy has no change,the size of granular BCC2phase increases,and the volume fraction of FCC zone and BCC zone has no change significantly.The yield strength is 668MPa,the fracture strength is 1029MPa,and the elongation is reduced to 9%.The strength of Fe_(40)Cr_(25)Ni_(25)Al_5Ti_5 alloy originates from the synergistic effect of coherent strengthening,solid solution strengthening and phase boundary strengthening.Dislocation slips are the main deformation mechanism of alloy. |
来源
|
材料工程
,2023,51(6):93-100 【核心库】
|
DOI
|
10.11868/j.issn.1001-4381.2022.000336
|
关键词
|
中熵合金
;
力学性能
;
强化机制
;
变形机制
|
地址
|
1.
沈阳航空航天大学材料科学与工程学院, 沈阳, 110136
2.
哈尔滨工业大学分析测试与计算中心, 哈尔滨, 150001
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1001-4381 |
学科
|
金属学与金属工艺 |
基金
|
沈阳航空航天大学博士科研启动基金项目
;
沈阳航空航天大学创新创业训练计划项目
|
文献收藏号
|
CSCD:7505508
|
参考文献 共
35
共2页
|
1.
Yeh J W. Nanostructured high-entropy alloys with multiple principal elements:novel alloy design concepts and outcomes.
Advanced Engineering Materials,2004,6(5):299-303
|
CSCD被引
1343
次
|
|
|
|
2.
Yeh J W. Alloy design strategies and future trends in high-entropy alloys.
JOM,2013,65(12):1759-1771
|
CSCD被引
139
次
|
|
|
|
3.
Ye Y F. High-entropy alloy:challenges and prospects.
Materials Today,2016,19(6):349-362
|
CSCD被引
229
次
|
|
|
|
4.
陈永星. 高熵合金制备及研究进展.
材料工程,2017,45(11):129-138
|
CSCD被引
29
次
|
|
|
|
5.
陈刚. Al_(0.1)CoCrFeNi高熵合金的力学性能和变形机理.
材料工程,2019,47(1):106-111
|
CSCD被引
6
次
|
|
|
|
6.
Gludovatz B. A fracture-resistant high-entropy alloy for cryogenic applications.
Science,2014,345(6201):1153-1158
|
CSCD被引
515
次
|
|
|
|
7.
Deng Y. Design of a twinning-induced plasticity high entropy alloy.
Acta Materialia,2015,94:124-133
|
CSCD被引
60
次
|
|
|
|
8.
Yao M J. A novel,single phase,non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility.
Scripta Materialia,2014,72:5-8
|
CSCD被引
63
次
|
|
|
|
9.
Zou Y. Size-dependent plasticity in an Nb25Mo25Ta25W25refractory high-entropy alloy.
Acta Materialia,2014,65:85-97
|
CSCD被引
53
次
|
|
|
|
10.
Zhang Y. Microstructures and properties of high-entropy alloys.
Progress in Materials Science,2014,61:1-93
|
CSCD被引
629
次
|
|
|
|
11.
Shahmir H. Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing.
Materials Science and Engineering: A,2017,705:411-419
|
CSCD被引
14
次
|
|
|
|
12.
Li Z Y. Effect of annealing on microstructure and mechanical properties of an ultrafine-structured Alcontaining FeCoCrNiMn high-entropy alloy produced by severe cold rolling.
Materials Science and Engineering:A,2020,786:139446
|
CSCD被引
8
次
|
|
|
|
13.
Zhao Y L. Development of highstrength Co-free high-entropy alloys hardened by nanosized precipitates.
Scripta Materialia,2018,148:51-55
|
CSCD被引
31
次
|
|
|
|
14.
He J Y. A precipitation-hardened high-entropy alloy with outstanding tensile properties.
Acta Materialia,2016,102:187-196
|
CSCD被引
235
次
|
|
|
|
15.
Slone C E. Achieving ultra-high strength and ductility in equiatomic CrCoNi with partially recrystallized microstructures.
Acta Materialia,2019,165:496-507
|
CSCD被引
40
次
|
|
|
|
16.
Jin X. A novel Fe20Co20Ni41Al19 eutectic high entropy alloy with excellent tensile properties.
Materials Letters,2018,216:144-146
|
CSCD被引
24
次
|
|
|
|
17.
He F. Designing eutectic high entropy alloys of CoCrFeNiNbx.
Journal of Alloys and Compounds,2016,656:284-289
|
CSCD被引
52
次
|
|
|
|
18.
Chen X. Effects of aluminum on microstructure and compressive properties of Al-Cr-Fe-Ni eutectic multi-component alloys.
Materials Science and Engineering: A,2017,681:25-31
|
CSCD被引
18
次
|
|
|
|
19.
Gao X. Microstructural origins of high strength and high ductility in an AlCoCrFeNi2.1eutectic high-entropy alloy.
Acta Materialia,2017,141:59-66
|
CSCD被引
77
次
|
|
|
|
20.
Jin X. Enhanced strength and ductility of Al0.9CoCrNi2.1eutectic high entropy alloy by thermomechanical processing.
Materialia,2020,10:100639
|
CSCD被引
7
次
|
|
|
|
|