交变压力环境下KH-550改性氧化石墨烯环氧涂层的失效机制
Failure Mechanism of an Epoxy Coating with KH-550 Modified Graphene Oxide Under Alternating Hydrostatic Pressure
查看参考文献17篇
文摘
|
石墨烯因其优异的力学性能及热化学稳定性、较大的比表面积而在防腐涂层应用中备受关注。采用硅烷偶联剂KH550对氧化石墨烯(GO)进行表面改性,研究了改性GO对深海交变压力模拟环境下环氧涂层失效机制的影响。利用TEM和沉降实验观察了GO粉末的分散性及其与环氧树脂的相容性;利用重量法、附着力测试和拉伸测试研究了涂层的防护性能;利用OCP和EIS研究了涂层在交变压力下的失效历程。结果表明:KH550改性GO涂层在抗渗透性、强韧性、附着力等方面均有明显提高。添加改性GO减少了涂层的表面缺陷,更加致密的涂层结构有效阻碍了溶液的扩散。改性GO与环氧树脂结合良好的界面可延缓交变压力的破坏作用,从而延长了涂层在交变压力环境下的使役寿命。 |
其他语种文摘
|
Graphene has attracted much attention in the application of anticorrosive coatings, due to its excellent mechanical properties, thermochemical stability and large specific surface area. The surface modification of graphene oxide (GO) was performed by silane coupling agent KH550, and the effect of modified GO on the failure mechanism of epoxy coating under simulated marine alternating hydrostatic pressure (AHP) was investigated. The dispersibility of GO powder and its compatibility with epoxy resin were observed by TEM and sedimentation experiments. The protective properties of the coating were studied by gravimetric method, adhesion test and tensile test. OCP and EIS were utilized to study the failure process of the coating under AHP. Results show that the anti-permeability, mechanical properties and adhesion of the coating are improved by modification of KH550-GO. The addition of modified GO reduces the surface defects of the coating, producing acompact coating structure, which effectively retards the diffusion of the solution. The well bonded interface between modified GO and epoxy resin can prevent the destruction of AHP and thus, extend the service life of the coating under AHP environment. |
来源
|
中国表面工程
,2019,32(4):27-35 【核心库】
|
DOI
|
10.11933/j.issn.1007–9289.20181120003
|
关键词
|
氧化石墨烯
;
硅烷偶联剂
;
有机涂层
;
交变压力
;
失效机制
|
地址
|
1.
东北大学, 沈阳材料科学国家研究中心, 沈阳, 110819
2.
中国科学院金属研究所腐蚀与防护实验室, 沈阳, 110016
|
语种
|
中文 |
文献类型
|
研究性论文 |
ISSN
|
1007-9289 |
学科
|
金属学与金属工艺 |
基金
|
中央高校基本科研业务费专项资金
;
中国博士后科学基金
;
辽宁省“兴辽英才计划”项目
|
文献收藏号
|
CSCD:6721745
|
参考文献 共
17
共1页
|
1.
See S C. A study of water absorption characteristics of a novel nano-gelcoat for marine application.
Progress in Organic Coatings,2009,65(2):169-174
|
CSCD被引
6
次
|
|
|
|
2.
Liu B. Effect of cross linking degree and adhesion force on the anti-corrosion performance of epoxy coatings under simulated deep sea environment.
Progress in Organic Coatings,2013,76(12):1814-1818
|
CSCD被引
13
次
|
|
|
|
3.
Tian W L. The failure behaviour of an epoxy glass flake coating/steel system under marine alternating hydrostatic pressure.
Corrosion Science,2014,86:81-92
|
CSCD被引
20
次
|
|
|
|
4.
Meng F D. The influence of the chemically bonded interface between fillers and binder on the failure behaviour of an epoxy coating under marine alternating hydrostatic pressure.
Corrosion Science,2015,101:139-154
|
CSCD被引
25
次
|
|
|
|
5.
Liu R. Finite element analysis of the water diffusion behaviour in pigmented epoxy coatings under alternating hydrostatic pressure.
Progress in Organic Coatings,2018,123:168-175
|
CSCD被引
9
次
|
|
|
|
6.
Chang C H. Novel anticorrosion coatings prepared from polyaniline/graphene composites.
Carbon,2012,50(14):5044-5051
|
CSCD被引
89
次
|
|
|
|
7.
Lin Y T. Improvement of mechanical properties and anticorrosion performance of epoxy coatings by the introduction of polyaniline/graphene composite.
Surface & Coatings Technology,2018:S0257897218300586
|
CSCD被引
1
次
|
|
|
|
8.
Rafiee M A. Buckling resistant graphene nanocomposites.
Applied Physics Letters,2009,95(22):223103.1-223103.3
|
CSCD被引
1
次
|
|
|
|
9.
Ramezanzadeh B. Enhancement of barrier and corrosion protection performance of an epoxy coating through wet transfer of amino functionalized graphene oxide.
Corrosion Science,2016,103:283-304
|
CSCD被引
67
次
|
|
|
|
10.
Yu Z X. Fabrication of graphene oxide-alumina hybrids to reinforce the anti-corrosion performance of composite epoxy coatings.
Applied Surface Science,2015,351:986-996
|
CSCD被引
45
次
|
|
|
|
11.
Zheng H P. Reinforcing the corrosion protection property of epoxy coating by using graphene oxide-poly(urea-formaldehyde) composites.
Corrosion Science,2017,123:267-277
|
CSCD被引
16
次
|
|
|
|
12.
Schniepp H C. Functionalized single graphene sheets derived from splitting graphite oxide.
Journal of Physical Chemistry B,2006,110(17):8535-8539
|
CSCD被引
148
次
|
|
|
|
13.
Tian W L. The failure behaviour of a commercial highly pigmented epoxy coating under marine alternating hydrostatic pressure.
Progress in Organic Coatings,2015,82:101-112
|
CSCD被引
19
次
|
|
|
|
14.
Bierwagen G. EIS studies of coated metals in accelerated exposure.
Progress in Organic Coatings,2003,46(2):148-157
|
CSCD被引
28
次
|
|
|
|
15.
Zhao H X. Effect of water absorption on the mechanical and dielectric properties of nano-alumina filled epoxy nanocomposites.
Key Engineering Materials,2007,334/335(4):617-620
|
CSCD被引
2
次
|
|
|
|
16.
Bouvet G. Impact of polar groups concentration and free volume on water sorption in model epoxy free films and coatings.
Progress in Organic Coatings,2016,96:32-41
|
CSCD被引
1
次
|
|
|
|
17.
Cakmakci I. Experimental and theoretical studies on protective properties of poly (pyrrole-co-N-methyl pyrrole) coatings on copper in chloride media.
Corrosion Science,2013,69:252-261
|
CSCD被引
2
次
|
|
|
|
|